【考试要求】 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.初步了解用代数方法处理几何问题的思想. 【微点提醒】 1.关注一个直角三角形 当直线与圆相交时,由弦心距(圆心到直线的距离)、弦长的一半及半径构成一个直角三角形. 2.圆的切线方程常用结论 (1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为 (x0-a)(x-a)+(y0-b)(y-b)=r2. (3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2. 【考点聚焦】 考点一 直线与圆的位置关系 【规律方法】判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 考点二 圆的切线、弦长问题 角度1 圆的弦长问题 角度3 与弦长有关的最值和范围问题 【规律方法】 1.弦长的两种求法 (1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. 考点三 圆与圆的位置关系 【规律方法】 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法. 2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到. |
|
来自: 昵称47813312 > 《高中数学》