分享

数学上“频率”与“概率”的关系?

 昵称27915469 2019-09-25

我是中考数学当百荟,从事初中数学教学三十多年。说到“频率”与“概率”的关系,首先要了解初中数学中基本的统计思想:用样本估计总体,用频率估计概率;其次,要知道数学试验的统计量:频率=频数/总次数。频率是通过试验得到的统计量,而概率是通过建立数学模型,计算得到的理论值。在一定的情况下,可以用频率去估计(代替)事件发生的概率。

一。用样本估计总体

统计中,通常通过调查的方式获取相关的统计量。调查通常有两种方式:普查和抽样调查比如:第六次全国人口普查(2010年11月1日),就是在国家统一规定的时间内,按照统一的方法、统一的项目、统一的调查表和统一的标准时点,全国人口普遍地、逐户逐人地进行的一次性调查登记这次人口普查登记的全国总人口为1,339,724,852人这个数据采用的就是普查方式得到的。而国家统计局每季度发布的居民人均可支配收入、居民消费价格指数、调查失业率等统计指标,是采用抽样调查方式获取的。

当统计的总体容量很大,调查耗时费力,调查成本巨大或者试验具有破坏性时,不宜采用普查方式,就要用抽样的方式来进行统计,然后用样本的统计量,去估计总体统计量。这种统计思想就叫做用样本估计总体。

比如:某照明企业生产一批LED灯泡,为统计这批LED灯泡的使用寿命,采用哪种调查方式比较适合呢?因为要了解LED的使用寿命,按试验要求,就必须将LED灯泡变成“长明灯”,一直点亮直至自然熄灭(寿终正寝)。这样试验是具有破坏性的,显然不能用普查方式,只能采用抽样的方式来进行。从这批LED灯泡中,随机抽取50只灯泡作为一个样本,通过试验得到这个样本的平均使用寿命为3000小时,然后我们就说该企业的这批LED灯泡(总体)的使用寿命为3000小时。

二。用频率估计概率

俗话说,天有不测风云,人有旦夕祸福。这句话从数学的角度来理解就是,在自然界和人类社会中,严格确定的事件是十分有限的,而随机事件却是十分普遍的,概率就是对随机事件的一种数学的定量描述。它有助于我们更全面地认识随机事件,并对生活中的一些不确定情况作出决策。天气预报中,有一个指标叫降水概率。比如,某天降水的概率为2%,是指这天下雨的可能性很小,我们依据这个概率决策:出门可以不带伞。

但是,不是所有随机事件发生的概率都可以进行理论计算的,因而,随机事件发生的概率获取通常有两种方式:理论计算和试验估计

在初中阶段,我们可以掌握的概率模型通常有三种类型1.问题本身没有理论概率,只能通过试验模拟估计(比如,前面举例中,任取一个LED灯泡是次品的概率);2.虽然问题存在理论概率,但计算方法超出初中阶段学生的认知水平,只能通过试验模拟估计(比如,以任意三条线段为边,围成三角形的概率);3.问题是简单的古典概率模型,理论上容易求出概率(比如,掷骰子掷到1点的概率),但也可以通过试验来验证

通过以上的分析知道,无论哪种概率模型的概率都可以通过试验模拟估计。以古典概型掷硬币试验为例,详细说明什么是用频率估计概率。随机掷硬币一次,只有两种可能:正面朝上或反面朝上,因而正面朝上的理论概率=0.5。其实,历史上有很多数学家都做过掷硬币试验,通过试验来验证这个理论概率。下面的图表是部分数学家试验得到的数据:

从以上图表可以知道,正面朝上的频率=正面朝上的次数/总次数。比如由上述图表可知,蒲丰共掷硬币4040次(总次数),其中正面朝上的次数2048,这个次数也称为频数,因而,正面朝上的频率=2048/4040≈0.506931。当试验的次数很大时,这个频率稳定在概率的理论值0.5附近。因而,我们可以用试验得到的正面朝上的频率去估计正面朝上的概率。需要说明的是,我们说这个频率稳定在理论值0.5附近,并不意味着试验次数越大,就越接近0.5。有可能随着试验次数的增大,试验得到的频率与理论概率的差距反而扩大了,出现这种情况本身也是一个随机事件,但稳定在理论值附近的趋势是改变不了的,因而我们完全可以用试验得到的频率去估计(代替)事件发生的概率,这种统计思想就叫做用频率估计概率。

下图是本人制作的计算机模拟投币试验:

三。用频率估计概率 蒙特卡罗方法 蒲丰投针试验

蒙特卡罗方法是美国研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和计算机的发明者J.冯·诺伊曼首先提出。这种方法借用世界著名的赌城—摩纳哥的Monte Carlo(蒙特卡罗)命名,更增添了它的神秘色彩。蒙特卡罗方法,在现代金融工程、宏观经济、计算物理、核物理等领域都有广泛应用。其实,这种思想可以追溯到一个更早更著名的试验---《蒲丰投针试验》。1777年,法国数学家蒲丰提出用投针试验的方法求圆周率π,他的这种试验方法被认为是蒙特卡罗方法的起源。

蒲丰投针试验中,针与平行线相交的理论概率p是可以计算的,p=2l/πa,其中l是针长,a是平行线的间距,它们都是已知量,因而p可以求出。并且针与平行线相交的频率p1是可以通过试验得到的,因此借用频率估计概率的思想有p=p1,即p1=2l/πa,在这个试验中,我们感兴趣的不是概率和频率(这些都是已知量),而是圆周率!我们对圆周率的值到底是多少很感兴趣,为此,只要将p1=2l/πa变形,即可得到求圆周率π的计算公式:π=2l/p1a

下图是历史上部分数学家通过投针试验,用频率估计概率思想,测得的圆周率的数据:

蒲丰投针试验求圆周率的方法,完全颠覆了我们对刘徽割圆术求圆周率的认知。只不过后来在此基础上发展起来的蒙特卡罗方法,是用计算机进行模拟试验,来测量我们感兴趣的事先未知的任何常数的值。

下图是本人制作的计算机模拟投针试验:


结语:

用样本估计总体,用频率估计概率是初中阶段必须具备的两个基本统计思想。诸如我们常常遇到有关概率统计类数学题目:掷骰子,翻牌游戏,转盘游戏,摸球游戏以及有关游戏公平性的问题,还有设计试验去估计生日相同的概率,池塘里有多少条鱼等等,都是借助这两个基本的统计思想建立数学模型,从而获得问题解决的。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多