分享

带你熟悉TCP/IP协议《入门到精通》面试常见题

 回家的梦想 2019-10-05

tcp/ip基础知识

背景及历史

军用技术

保证通信不中断,分布式通信诞生,分组交换技术诞生。

容灾性较弱的中央集中式网络:

带你熟悉TCP/IP协议《入门到精通》面试常见题

容灾性较强的分组网络:

带你熟悉TCP/IP协议《入门到精通》面试常见题

TCP/IP的诞生

1982年,TCP/IP具体规范最终定下来,并于1983年成为ARPANET网络唯一指定协议。

2.2标准化

简介:TCP/IP 是利用IP进行通信时所必须用到的协议群的统称。

带你熟悉TCP/IP协议《入门到精通》面试常见题

互联网基础

“互联网”是指由ARPANET发展而来、互连全世界的计算机网络。互联网的协议就是TCP/IP。

结构: 互联网中的每个网络都是骨干网(BackBone)和末端网(Stub)组成的。每个网络之间通过NOC(网络操作中心)相连。如果网络运营商不同,它的网络连接方式和使用方法也会不同。连接这种异构网络需要IX的支持。总之,互联网就是众多异构的网络通过IX互连的一个巨型网络。

带你熟悉TCP/IP协议《入门到精通》面试常见题

连接互联网需要向ISP或区域网提出申请。

TCP/IP分层模型

TCP/IP与OSI参考模型:

带你熟悉TCP/IP协议《入门到精通》面试常见题

硬件(物理层)

简介:TCP/IP最底层负责数据传输的硬件。

网络接口层(数据链路层)

简介:网络接口层利用以太网中数据链路层进行通信,因此属于接口层。

互联网层(网络层)

简介:互联网层使用IP协议,它相当于OSI模型中的第3层网络层。IP协议基于IP地址转发分包数据。

IP:跨越网络传送数据包,使整个互联网都能收到数据的协议。IP还隐含着数据链路的功能。通过IP,相互通信的主机之间不论经过怎样的底层数据链路都能实现通信。虽然IP也是分组交换的一种协议,但是它不具有重发机制。即使分组数据包未能到达对端主机也不会重发。因此属于非可靠性传输协议。

ICMP:IP数据包在发送途中一旦发生异常导致无法到达对端目标地址时,需要给发送一个异常的通知。ICMP就是为这一功能而制定的。诊断网络健康。

互联网协议入门

一、概述

1.1 五层模型

互联网的实现,分成好几层。每一层都有自己的功能,

用户接触到的,只是最上面的一层,要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。

最底下的一层叫做”实体层”(Physical Layer),最上面的一层叫做”应用层”(Application Layer),中间的三层(自下而上)分别是”链接层”(Link Layer)、”网络层”(Network Layer)和”传输层”(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。

1.2 层与协议

每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。

大家都遵守的规则,就叫做”协议”(protocol)。

都定义了很多协议。这些协议的总称,就叫做”互联网协议”(Internet Protocol Suite)。它们是互联网的核心,

二、实体层

我们从最底下的一层开始。

第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

这就叫做”实体层”,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

三、链接层

3.1 定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是”链接层”的功能,

3.2 以太网协议

每家公司都有自己的电信号分组方式。逐渐地,一种叫做“以太网”(Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做”帧”(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

“标头”包含数据包的一些说明项,比如发送者、接受者、数据类型等等;”数据”则是数据包的具体内容。

“标头”的长度,固定为18字节。”数据”的长度,最短为46字节,最长为1500字节。因此,整个”帧”最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

3.3 MAC地址

以太网数据包的”标头”,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有”网卡”接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

3.4 广播

定义地址只是第一步,后面还有更多的步骤。

首先,一块网卡怎么会知道另一块网卡的MAC地址?

回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。

其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?

以太网采用了一种很”原始”的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的”标头”,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做”广播”(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,”链接层”就可以在多台计算机之间传送数据了。

四、网络层

4.1 网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

以太网采用广播方式发送数据包,所有成员人手一”包”,不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用”路由”方式发送。(”路由”的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了”网络层”的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做”网络地址”,简称”网址”。

于是,”网络层”出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

4.2 IP协议

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数”子网掩码”(subnet mask)。

”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道”子网掩码”,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

4.3 IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的”数据”部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为”标头”和”数据”两个部分。

“标头”部分主要包括版本、长度、IP地址等信息,”数据”部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

IP数据包的”标头”部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的”数据”部分,最长为65,515字节。前面说过,以太网数据包的”数据”部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

4.4 ARP协议

关于”网络层”,还有最后一点需要说明。

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的”网关”(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个”广播”地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

五、传输层

5.1 传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做”端口”(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

“端口”是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

“传输层”的功能,就是建立”端口到端口”的通信。相比之下,”网络层”的功能是建立”主机到主机”的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做”套接字”(socket)。有了它,就可以进行网络应用程序开发了。

5.2 UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由”标头”和”数据”两部分组成。

“标头”部分主要定义了发出端口和接收端口,”数据”部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的”数据”部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

UDP数据包非常简单,”标头”部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

5.3 TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的”数据”部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

TCP/IP协议

TCP/IP不是一个协议,而是一个协议族的统称。里面包括IP协议、IMCP协议、TCP协议。

TCP/IP分层:

带你熟悉TCP/IP协议《入门到精通》面试常见题

这里有几个需要注意的知识点:

互联网地址:也就是IP地址,一般为网络号+子网号+主机号

域名系统:通俗的来说,就是一个数据库,可以将主机名转换成IP地址

RFC:TCP/IP协议的标准文档

端口号:一个逻辑号码,IP包所带有的标记

Socket:应用编程接口

数据链路层的工作特性:

为IP模块发送和接收IP数据报

为ARP模块发送ARP请求和接收ARP应答(ARP:地址解析协议,将IP地址转换成MAC地址)

为RARP发送RARP请求和接收RARP应答

接下来我们了解一下TCP/IP的工作流程:

数据链路层从ARP得到数据的传递信息,再从IP得到具体的数据信息

IP协议

带你熟悉TCP/IP协议《入门到精通》面试常见题

IP协议头当中,最重要的就是TTL(IP允许通过的最大网段数量)字段(八位),规定该数据包能穿过几个路由之后才会被抛弃。

IP路由选择

带你熟悉TCP/IP协议《入门到精通》面试常见题

ARP协议工作原理

带你熟悉TCP/IP协议《入门到精通》面试常见题

ICMP协议(网络控制文协议)

将IP数据包不能传送的错误信息传送给主机

查询报文

ping查询:主机是否可达,通过计算间隔时间和传送多少个包的数量

子网掩码

时间戳:获得当前时间

差错报文

不产生的情况:

ICMP差错报文不产生差错报文

源地址为零地址、环目地址、广播地址、多播地址

IP路由器选择协议

静态路由选择

先来看路由选择工作流程:

带你熟悉TCP/IP协议《入门到精通》面试常见题

静态路由选择

配置接口以默认方式生成路由表项,或者使用route add手动添加表项

ICMP报文(ICMP重定向报文)更新表项

动态路由选择(只使用在路由之间)

RIP(路由信息协议)

分布式的基于距离向量(路由器到每一个目的网络的距离记录)的路由选择协议

router承担的工作:

给每一个已知路由器发送RIP请求报文,要求给出完整的路由表

如果接受请求,就将自己的路由表交给请求者;如果没有,就处理IP请求表项(自己部分+跳数/没有的部分+16)

接受回应,更新路由表

定期更新路由表(一般为30s,只能说太频繁~)

OSPF(开放最短路径优先协议)

分布式链路状态(和这两个路由器都有接口的网络)协议

当链路状态发生变化时,采用可靠的洪泛法,向所有的路由器发送信息(相邻的所有路由器的链路状态)

最终会建立一个全网的拓扑结构图

TCP/IP的三次握手,四次分手

首先我们先来了解TCP报文段

带你熟悉TCP/IP协议《入门到精通》面试常见题

重要的标志我在图中也有标记,重点了解标志位

ACK:确认序号有效

RST:重置连接

SYN:发起了一个新连接

FIN:释放一个连接

三次握手的过程(客户端我们用A表示,服务器端用B表示)

前提:A主动打开,B被动打开

带你熟悉TCP/IP协议《入门到精通》面试常见题

在建立连接之前,B先创建TCB(传输控制块),准备接受客户进程的连接请求,处于LISTEN(监听)状态

A首先创建TCB,然后向B发出连接请求,SYN置1,同时选择初始序号seq=x,进入SYN-SEND(同步已发送)状态

B收到连接请求后向A发送确认,SYN置1,ACK置1,同时产生一个确认序号ack=x+1。同时随机选择初始序号seq=y,进入SYN-RCVD(同步收到)状态

A收到确认连接请求后,ACK置1,确认号ack=y+1,seq=x+1,进入到ESTABLISHED(已建立连接)状态。向B发出确认连接,最后B也进入到ESTABLISHED(已建立连接)状态。

简单来说,就是

建立连接时,客户端发送SYN包(SYN=i)到服务器,并进入到SYN-SEND状态,等待服务器确认

服务器收到SYN包,必须确认客户的SYN(ack=i+1),同时自己也发送一个SYN包(SYN=k),即SYN+ACK包,此时服务器进入SYN-RECV状态

客户端收到服务器的SYN+ACK包,向服务器发送确认报ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手

在此穿插一个知识点就是SYN攻击,那么什么是SYN攻击?发生的条件是什么?怎么避免?

在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是 Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址 是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网 络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:

#netstat -nap | grep SYN_RECV

四次分手的过程(客户端我们用A表示,服务器端用B表示)

由于TCP连接时是全双工的,因此每个方向都必须单独进行关闭。这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的链接。收到一个FIN只是意味着这一方向上没有数据流动,既不会在收到数据,但是在这个TCP连接上仍然能够发送数据,知道这一方向也发送了FIN,首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭。

前提:A主动关闭,B被动关闭

带你熟悉TCP/IP协议《入门到精通》面试常见题

A发送一个FIN,用来关闭A到B的数据传送,A进入FIN_WAIT_1状态。

B收到FIN后,发送一个ACK给A,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),B进入CLOSE_WAIT状态。

B发送一个FIN,用来关闭B到A的数据传送,B进入LAST_ACK状态。

A收到FIN后,A进入TIME_WAIT状态,接着发送一个ACK给B,确认序号为收到序号+1,B进入CLOSED状态,完成四次挥手。

简单来说就是

一;客户端A发送一个FIN,用来关闭客户A到服务器B的数据传送(报文段4)。

二;服务器B收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。

三;服务器B关闭与客户端A的连接,发送一个FIN给客户端A(报文段6)。

四;客户端A发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

A在进入到TIME-WAIT状态后,并不会马上释放TCP,必须经过时间等待计时器设置的时间2MSL(最长报文段寿命),A才进入到CLOSED状态。为了保证A发送的最后一个ACK报文段能够到达B

防止“已失效的连接请求报文段”出现在本连接中

OK~是不是很难懂的感觉?那就私信我吧。;资料;

注;C/C++ Linux服务器开发学习资料私信“资料”,直接领取全套资料

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多