分享

菜鸟必备的循环神经网络指南(附链接)

 hlhq1 2019-10-17

作者:Victor Zhou


本文将介绍最基础的循环神经网络(Vanilla RNNs)的概况,工作原理,以及如何在Python中实现。

循环神经网络(RNN)是一种专门处理序列的神经网络。由于在处理文本时十分高效,它经常用于自然语言处理(NLP)。在接下来的文章中,我们将探讨RNN是什么,了解它的工作原理,并使用Python从零开始构建一个真正的RNN(仅使用numpy)。

在另一篇文章中,我介绍了一些神经网络的基本知识。本文对基础部分不做过多介绍,如有需要,建议先阅读基础文章。

附链接:

https:///blog/intro-to-neural-networks/

让我们开始吧!

1. 为什么要用RNNs?

关于原始的神经网络(同样对于CNNs)的一个问题是它们只能使用预定大小的输入和输出:它们采用固定大小的输入并生成固定大小的输出。相比之下,RNNs可以将可变长度序列作为输入和输出。以下是RNN的示例:

菜鸟必备的循环神经网络指南(附链接)

红色为输入,绿色为RNN本身,蓝色为输出。来源:Andrej Karpathy

这种处理序列的能力使RNN表现优异。例如:

  • 机器翻译(例如Google翻译)使用“多对多”RNN。原始文本序列被送入RNN,随后RNN将翻译的文本作为输出。

  • 情感分析(例如,这是一个积极的还是负面的评论?)通常是使用“多对一”RNN。将要分析的文本送入RNN,然后RNN产生单个输出分类(例如,这是一个积极的评论)。

在本文后面,我们将从零开始构建“多对一”RNN,并完成基本的情感分析。

2. 如何使用RNNs

让我们来看看“多对多”RNN吧!

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

  1. 基于之前的隐藏状态和下一个输入,我们可以得到下一个隐藏状态。

  2. 通过计算, 我们可以得到下一个输出 。

菜鸟必备的循环神经网络指南(附链接)

多对多 RNN

这就是使RNN循环的过程:每一步都会使用相同的权重。 更具体地说,典型的原始RNN仅使用3组权重就能完成计算:

菜鸟必备的循环神经网络指南(附链接)

此外, 我们还要在RNN中引入两个偏移量:

我们用矩阵表示权重,用向量表示偏差。这3个权重和2个偏差就构成了整个RNN!

以下是将所有内容组合在一起的公式:

菜鸟必备的循环神经网络指南(附链接)

不要略过这些方程式。 停下来一分钟看看它。 另外,要时刻牢记权重是矩阵,其他变量是向量。

我们在矩阵乘法中应用所有的权重,并将偏差添加到所得结果中。然后我们将tanh作为第一个等式的激活函数(也可以使用其他激活,如sigmoid)。

3. 问题

接下来我们将从零开始应用RNN来执行简单的情感分析任务:确定给定的文本的情感是正向的还是负向的。

以下是我为本文整理的数据集中的一些示例:

附数据集链接:

https://github.com/vzhou842/rnn-from-scratch/blob/master/data.py

菜鸟必备的循环神经网络指南(附链接)

4. 计划

由于这是一个分类问题,我们将使用“多对一”RNN。这和我们之前讨论过的“多对多”RNN类似,但不同的是它只使用最终隐藏状态输出一个y:

菜鸟必备的循环神经网络指南(附链接)

多对一 RNN

每个都是一个表示文本中单词的向量。输出的y向量将包含两个数字,一个表示积极态度,另一个表示消极态度。我们将应用Softmax将这些值转换为概率,并最终在积极/消极之间做出决定。

让我们开始实现RNN吧!

5. 预处理

前文提到的数据集由两部分组成。

data.pytrain_data = { 'good': True, 'bad': False, # ... more data} test_data = { 'this is happy': True, 'i am good': True, # ... more data}True=积极,False=消极

我们必须进行一些预处理才能将数据转换为可用的格式。首先,我们构建词汇表,用来存放数据中出现的词汇:

main.pyfrom data import train_data, test_data # Create the vocabulary.vocab = list(set([w for text in train_data.keys() for w in text.split(' ')]))vocab_size = len(vocab)print('%d unique words found' % vocab_size) # 18 unique words found

现在,vocab这个列表中包含了所有的单词,这里是指至少在一个训练样本中出现的单词。接下来,为了表示词汇表中的每个单词,我们将设定一个整数索引。

main.py# Assign indices to each word.word_to_idx = { w: i for i, w in enumerate(vocab) }idx_to_word = { i: w for i, w in enumerate(vocab) }print(word_to_idx['good']) # 16 (this may change)print(idx_to_word[0]) # sad (this may change)

我们现在可以用相应的整数索引表示任何给定的单词!这是必要的步骤,因为RNN无法理解单词,所以我们必须给它输入数字。

最后,回想一下RNN的每个输入是一个向量。我们将使用独热编码,其中包含除了单个一之外的所有零。每个独热向量中的“1”将位于单词的相应整数索引处。

由于我们的词汇表中有18个唯一的单词,每个将是一个18维的单热矢量。

main.pyimport numpy as np def createInputs(text): ''' Returns an array of one-hot vectors representing the words in the input text string. - text is a string - Each one-hot vector has shape (vocab_size, 1) ''' inputs = [] for w in text.split(' '): v = np.zeros((vocab_size, 1)) v[word_to_idx[w]] = 1 inputs.append(v) return inputs

随后,我们将用createInputs()来生成输入向量,并传入到RNN中。

6. 向前传播阶段

是时候开始实现我们的RNN了!我们首先将初始化RNN需要的3个权重和2个偏移量:

rnn.pyimport numpy as npfrom numpy.random import randn class RNN: # A Vanilla Recurrent Neural Network. def __init__(self, input_size, output_size, hidden_size=64): # Weights self.Whh = randn(hidden_size, hidden_size) / 1000 self.Wxh = randn(hidden_size, input_size) / 1000 self.Why = randn(output_size, hidden_size) / 1000 # Biases self.bh = np.zeros((hidden_size, 1)) self.by = np.zeros((output_size, 1))

注意:我们除以1000以减少权重的初始方差。尽管这不是初始化权重的最佳方法,但它很直观,适用于这篇文章。

我们使用np.random.randn(),基于标准正态分布初始化权重。

接下来,让我们实现RNN前向传播。 还记得我们之前看到的这两个方程吗?

菜鸟必备的循环神经网络指南(附链接)

以下是在代码中的实现:

rnn.pyclass RNN: # ...  def forward(self, inputs): ''' Perform a forward pass of the RNN using the given inputs. Returns the final output and hidden state. - inputs is an array of one hot vectors with shape (input_size, 1). ''' h = np.zeros((self.Whh.shape[0], 1))  # Perform each step of the RNN for i, x in enumerate(inputs): h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh)  # Compute the output y = self.Why @ h + self.by  return y, h

这很简单吧? 请注意,因为没有之前的h可以使用,我们在第一步中将h初始化为零向量。

让我们来试试吧:

main.py# ... def softmax(xs): # Applies the Softmax Function to the input array. return np.exp(xs) / sum(np.exp(xs)) # Initialize our RNN!rnn = RNN(vocab_size, 2) inputs = createInputs('i am very good')out, h = rnn.forward(inputs)probs = softmax(out)print(probs) # [[0.50000095], [0.49999905]]

如果需要复习Softmax相关知识,可以通过链接阅读相关的快速解释。

附链接:

https:///blog/softmax/

我们的RNN可以成功运行,但它看起来不是很有用。 看来我们得作出一些改变......

7. 反馈阶段

为了训练RNN,首先我们需要一个损失函数。我们将使用交叉熵损失函数,它通常与Softmax结合。 计算公式如下:

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

现在我们有了损失函数,我们将使用梯度下降来训练RNN模型,以尽量减少损失。 这意味着我们现在要做一些梯度相关的计算!

以下部分需要一些多变量微积分的基本知识,你可以选择跳过这部分。即使你不太了解,我也建议你大概浏览一下。推导出结果后,我们将逐步完成代码,浅层次的理解也会有所帮助。

如果想要深入了解本节,可以阅读我在“神经网络介绍”一文中的“训练神经网络”部分。 此外,本文的所有代码都在Github上,你也可以在Github上关注我。

附Github链接:

https://github.com/vzhou842/rnn-from-scratch

7.1定义

首先,我们要明确一些定义:

菜鸟必备的循环神经网络指南(附链接)

7.2 准备

接下来,我们需要编辑向前传播阶段并缓存一些数据,以便在反馈阶段使用。在我们处理它的同时,我们还将为我们的反馈阶段设置框架。大致如下所示:

rnn.pyclass RNN: # ...  def forward(self, inputs): ''' Perform a forward pass of the RNN using the given inputs. Returns the final output and hidden state. - inputs is an array of one hot vectors with shape (input_size, 1). ''' h = np.zeros((self.Whh.shape[0], 1))  self.last_inputs = inputs self.last_hs = { 0: h } # Perform each step of the RNN for i, x in enumerate(inputs): h = np.tanh(self.Wxh @ x + self.Whh @ h + self.bh) self.last_hs[i + 1] = h # Compute the output y = self.Why @ h + self.by  return y, h  def backprop(self, d_y, learn_rate=2e-2):''' Perform a backward pass of the RNN. - d_y (dL/dy) has shape (output_size, 1). - learn_rate is a float. ''' pass

7.3 梯度

现在开始是数学登场的时候啦!我们要开始计算

菜鸟必备的循环神经网络指南(附链接)

通过链式法则计算的过程就作为练习吧,结果如下:

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

main.py# Loop over each training examplefor x, y in train_data.items(): inputs = createInputs(x) target = int(y) # Forward out, _ = rnn.forward(inputs) probs = softmax(out) # Build dL/dy d_L_d_y = probs d_L_d_y[target] -= 1 # Backward rnn.backprop(d_L_d_y)

接下来,让我们完成和的梯度计算,这仅用于将最终隐藏状态转换为RNN的输出。 我们有:

菜鸟必备的循环神经网络指南(附链接)

是最终的隐藏状态。因此,

菜鸟必备的循环神经网络指南(附链接)

同样的,

菜鸟必备的循环神经网络指南(附链接)

我们现在可以开始应用backprop()!

rnn.pyclass RNN: # ...  def backprop(self, d_y, learn_rate=2e-2): ''' Perform a backward pass of the RNN. - d_y (dL/dy) has shape (output_size, 1). - learn_rate is a float. ''' n = len(self.last_inputs)  # Calculate dL/dWhy and dL/dby.d_Why = d_y @ self.last_hs[n].T d_by = d_y

提示:我们之前在forward()中创建了self.last_hs。

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

因为改变将影响每一个,这一切都会影响y和最终L。为了计算的梯度, 我们需要所有时间步长的反向传播,这称为反向传播时间(BPTT):

菜鸟必备的循环神经网络指南(附链接)

菜鸟必备的循环神经网络指南(附链接)

rnn.pyclass RNN: # … def backprop(self, d_y, learn_rate=2e-2):‘’’Perform a backward pass of the RNN.- d_y (dL/dy) has shape (output_size, 1).- learn_rate is a float.‘’’n = len(self.last_inputs) # Calculate dL/dWhy and dL/dby.D_Why = d_y @ self.last_hs[n].Td_by = d_y # Initialize dL/dWhh, dL/dWxh, and dL/dbh to zero.D_Whh = np.zeros(self.Whh.shape)d_Wxh = np.zeros(self.Wxh.shape)d_bh = np.zeros(self.bh.shape) # Calculate dL/dh for the last h.d_h = self.Why.T @ d_y # Backpropagate through time.For t in reversed(range(n)): # An intermediate value: dL/dh * (1 – h^2) temp = ((1 – self.last_hs[t + 1] ** 2) * d_h) # dL/db = dL/dh * (1 – h^2) d_bh += temp # dL/dWhh = dL/dh * (1 – h^2) * h_{t-1} d_Whh += temp @ self.last_hs[t].T # dL/dWxh = dL/dh * (1 – h^2) * x d_Wxh += temp @ self.last_inputs[t].T # Next dL/dh = dL/dh * (1 – h^2) * Whh d_h = self.Whh @ temp # Clip to prevent exploding gradients.For d in [d_Wxh, d_Whh, d_Why, d_bh, d_by]: np.clip(d, -1, 1, out=d) # Update weights and biases using gradient descent.Self.Whh -= learn_rate * d_Whhself.Wxh -= learn_rate * d_Wxhself.Why -= learn_rate * d_Whyself.bh -= learn_rate * d_bhself.by -= learn_rate * d_by

补充一些注意事项:

菜鸟必备的循环神经网络指南(附链接)

好啦!我们的RNN已经完成啦。

8. 高潮

终于等到了这一刻 - 让我们测试RNN吧!

首先,我们将编写一个帮助函数来处理RNN的数据:

main.pyimport random def processData(data, backprop=True): ''' Returns the RNN's loss and accuracy for the given data. - data is a dictionary mapping text to True or False. - backprop determines if the backward phase should be run. ''' items = list(data.items()) random.shuffle(items)  loss = 0 num_correct = 0  for x, y in items: inputs = createInputs(x) target = int(y)  # Forward out, _ = rnn.forward(inputs) probs = softmax(out)  # Calculate loss / accuracy loss -= np.log(probs[target]) num_correct += int(np.argmax(probs) == target)  if backprop: # Build dL/dy d_L_d_y = probs d_L_d_y[target] -= 1  # Backward rnn.backprop(d_L_d_y)  return loss / len(data), num_correct / len(data)现在,我们可以完成一个训练的循环:main.py# Training loopfor epoch in range(1000): train_loss, train_acc = processData(train_data)  if epoch % 100 == 99: print('--- Epoch %d' % (epoch + 1)) print('Train:\tLoss %.3f | Accuracy: %.3f' % (train_loss, train_acc))  test_loss, test_acc = processData(test_data, backprop=False) print('Test:\tLoss %.3f | Accuracy: %.3f' % (test_loss, test_acc))

运行 main.py应该会得到如下输出:

--- Epoch 100Train: Loss 0.688 | Accuracy: 0.517Test: Loss 0.700 | Accuracy: 0.500--- Epoch 200Train: Loss 0.680 | Accuracy: 0.552Test: Loss 0.717 | Accuracy: 0.450--- Epoch 300Train: Loss 0.593 | Accuracy: 0.655Test: Loss 0.657 | Accuracy: 0.650--- Epoch 400Train: Loss 0.401 | Accuracy: 0.810Test: Loss 0.689 | Accuracy: 0.650--- Epoch 500Train: Loss 0.312 | Accuracy: 0.862Test: Loss 0.693 | Accuracy: 0.550--- Epoch 600Train: Loss 0.148 | Accuracy: 0.914Test: Loss 0.404 | Accuracy: 0.800--- Epoch 700Train: Loss 0.008 | Accuracy: 1.000Test: Loss 0.016 | Accuracy: 1.000--- Epoch 800Train: Loss 0.004 | Accuracy: 1.000Test: Loss 0.007 | Accuracy: 1.000--- Epoch 900Train: Loss 0.002 | Accuracy: 1.000Test: Loss 0.004 | Accuracy: 1.000--- Epoch 1000Train: Loss 0.002 | Accuracy: 1.000Test: Loss 0.003 | Accuracy: 1.000

我们自己制造的RNN也不错。

想亲自尝试或修补这些代码?你也可以在Github上找到。

附链接:

https://github.com/vzhou842/rnn-from-scratch

9. 总结

本文中,我们完成了回归神经网络的演练,包括它们是什么,它们如何工作,为什么它们有用,如何训练它们以及如何实现它们。不过,你还可以做更多的事情:

  • 了解长短期记忆网络(LSTM),这是一个更强大和更受欢迎的RNN架构,或关于LSTM的著名的变体--门控循环单元(GRU)。

  • 通过恰当的ML库(如Tensorflow,Keras或PyTorch),你可以尝试更大/更好的RNN。

  • 了解双向RNN,它可以处理前向和后向序列,因此输出层可以获得更多信息。

  • 尝试像GloVe或Word2Vec这样的Word嵌入,可用于将单词转换为更有用的矢量表示。

  • 查看自然语言工具包(NLTK),这是一个用于处理人类语言数据的Python库

原文标题:

An Introduction to Recurrent Neural Networks for Beginners

原文链接:

https:///blog/intro-to-rnns/

编辑:于腾凯

校对:杨学俊

译者简介

菜鸟必备的循环神经网络指南(附链接)

王雨桐,UIUC统计学在读硕士,本科统计专业,目前专注于Coding技能的提升。理论到应用的转换中,敬畏数据,持续进化。

— 完 —

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多