分享

一文了解阻燃剂及原理、分类

 平淡人生a9 2019-11-03

2019.9.18-20中国国际橡胶技术展在上海新国际博览中心(龙阳路),李秀权工作室携手大连嘉尔新橡塑机械有限公司在N 1馆1B 485恭候您的莅临!

报名加微信长按三秒识别加好友:


阻燃实现的途径

气相阻燃机理。即抑制在燃烧反应中起链增长作用的自由性,而发挥阻燃作用。

凝聚相阻燃机理。它在固相中阻止聚合物的热分解和阻止聚合物释放出可燃气体的作用。

中断热交换机理。即将聚合物物产生的热量带走而不反馈到聚合物上,使聚合物不再不断分解。

阻燃剂分类

根据元素种类分为卤系、有机磷系及卤-磷系、氮系、硅系、铝-镁系、钼系等。按阻燃作用分有膨胀型阻燃剂、成炭阻燃剂等。按化学结构分无机阻燃剂,有机阻燃剂,高分子阻燃剂等。按阻燃剂与被阻燃材料的关系可分为添加型阻燃剂和反应型阻燃剂,反应型阻燃剂参与高聚物的化学反应。

1

 卤系阻燃剂

卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一。卤系阻燃剂主要用于电子和建筑工业,约50~100种含卤阻燃剂覆盖了大多数的市场需求。
卤素阻燃剂之所以受到人们的重视,主要是卤系阻燃剂的阻燃效率高,价格适中,其性能价格比这一指标是其它阻燃剂难以与之相比,加之卤系阻燃剂的品种多,适用范围广,所以受到人们的青睐。但是,卤素阻燃剂在热裂解或燃烧时生成较多的烟和腐蚀性气体及以受到二恶英问题的困扰。
超过80%的含卤阻燃剂用于电子/办公设备及建筑工业,主要应用品种为苯乙烯类及其共聚物,热塑性工程塑料和环氧树脂。

2

含磷阻燃剂

含磷化合物可作为热塑性塑料、热固性塑料、织物、纸张、涂料和胶粘剂等的阻燃剂。此类阻燃剂包括红磷、水溶性的无机磷酸盐类、不溶性的聚磷酸铵、有机磷酸酯和膦酸酯类、氧化膦类、氢弹烃基磷酸酯类和溴芳烃基磷酸酯类。
卤素阻燃剂虽然具有高阻燃性,但存在环境污染及毒性等问题,而磷系阻燃剂除对苯乙烯和聚烯烃等几大类聚合物外是非常有效的阻燃剂,而且二次污染小,所以该阻燃剂受到人们的关注。
磷酸铵类

磷酸一铵(MAP)和磷酸二铵(DAP)仍是纤维与织物、无纺织物、纸张、木材等多种纤维素的有效阻燃剂。它们能形成磷酸,使纤维素羟基酯化,所生成的纤维素分解成炭,改变了热降解历程,从而达到阻燃的目的。它们易溶于水,故其阻燃性不能持久。它是目前膨胀型阻燃剂主要组分之一。
 红磷

红磷是极有效的阻燃剂,可用于含氧聚合物,例如PC,PET,PBT,PPE,其作为尼龙部件的阻燃剂在欧洲用得较多。由于红磷会与大气中的水反应生成有毒的磷化氢,因此工业产品需要做稳定化处理和包覆。

三羟基磷(膦)酸酯

三羟基磷(膦)酸酯作为不饱和聚酯高度填充(如氢化铝、碳酸钙)时的稀释剂。它在卤化聚酯中也作为协效剂,不如氧化锑有效,但加工性好。较不易挥发的三羟基磷酸酯有三丁基磷酸酯、三辛基磷酸酯和三丁氧基乙基的磷酸酯。二甲基磷酸甲酯含磷量高达25%,是极有效的阻燃剂。它的高挥发性限制了应用。适用于聚氨酯硬泡,高填的热固性树脂。在高填充的热固性树脂中也作为黏度稀释剂。二乙基磷酸乙酯在氨基甲酸乙酯有发泡剂和胺催化剂的条件下比较稳定。
芳基磷酸酯类

芳基磷酸酯类在工业中主要用于PVC和乙酸纤维素的不燃性增塑剂和作为工程塑料如PPE,PC/ABS合金的非卤阻燃剂。

烷基化磷酸三苯酯

芳基磷酸酯类都是液体,主要烷基化产物是用合成的异丙基葳酚或异丁基苯酚制成的。制法是先使苯酚烷基化,然后再同磷酰氯反应。因此烷基化三芳基磷酸酯是一混合物。其中磷酸三丁苯酯的抗氧化性能较好,但增塑性较差。磷酸甲三基二苯酯是PVC最有效的阻燃剂。但也最易挥发,在欧洲使用。烷烃二芳基膦酸酯增塑性较好,用于PVC有较好的低温性,它的生烟量也比三芳基膦酸酯少。

 2-乙基己基二苯基磷酸酯

 2-乙基己基二苯基磷酸酯已得到美国食品和药品管理局的批准可用于食品包装。异癸基二苯基磷酸酯由于有较长的烃基不易挥发,可用于PVC电缆,尤其高压电缆。
 二聚体芳基磷酸酯挥发性较低,其连接基为间苯二酚、对苯二酚或双苯酚。它们用于热塑性塑料(如PPE,PC/ABS)。
改性聚苯醚(PPE)

改性聚苯醚(PPE)是PPE与高抗冲聚苯乙烯(PS-HI)的掺混物。根据等级,一般含有55%~65%的PS-HI。虽然磷酸酯并不能使PS-HI达到UL 94阻燃等级,但它在工业上用于阻燃PPE树脂,并达到UL 95 V-0级。通过磷酸酯所生成的磷酸使PPE成炭达到阻燃的目的。工业用的阻燃剂是液态的烷基化的三芳膦酸酯或二烯酸酯。
三芳基膦酸酯

三芳基膦酸酯在加工时会挥发,导致应力断裂。用较不挥发的二磷酸酯则可减少应力断裂。双酚A可为二磷酸醌的连接基团。

含卤磷酸酯

含卤烷基磷酸酯主要用于聚氨酯较硬泡沫制品。但热稳定性较差。但因含卤磷酸酯因基毒性,已被欧盟等多数国家禁止使用,我国也不推荐使用。
磷的氧化物类

磷氧化物具有水解稳定的P—C键,它们的含P量高于芳基磷酸酯,因而是更有效的阻燃剂。它们的二元醇和三元醇是聚氨酯和环氧树脂的活性阻燃剂。
磷化合物作为阻燃剂,可在凝聚相中抑制自由基反应,它们本身还可生成玻璃状物质直到传热、传质的阻隔作用。有机磷系阻燃剂被认为是替代卤代阻燃剂最有前景的品种之一。

3

无机氢氧化物

无机氢氧化物是非常重要的阻燃剂。无机氢氧化物易处理,相对无毒,不产生有毒、有腐蚀性的气体,而且抑烟,更重要的是比卤、磷阻燃体系便宜。这类阻燃剂采用适当的配方可使材料达到多种测试要求。无机氢氧化铝是无机氢氧化物销售最多的阻燃剂,主要用于加工温度在200℃以下的合成橡胶、热固性树脂及热塑性塑料。考虑含卤及含磷阻燃剂的环境问题,无机氢氧化物阻燃剂的应用得到持续的增长。

氢氧化铝(ATH)

氢氧化铝是应用最广泛的阻燃剂之一。是一种无毒、白色至浅白色的粉末,相对密度2.42,莫氏硬度为3.0,当温度加热到高于320℃时,氢氧化铝因失水而损失其重的34.6%。
对于加工温度低于氢氧化铝分解温度(190~230℃)的聚合物,氢氧化铝是一种优良的阻燃材料,值得注意的是颗粒直径的大小对于热稳定有影响。
氢氧化铝作为阻燃材料,用于弹性体、热固性树脂及热塑性塑料等,也大量用于生产阻燃地毯的苯乙烯-丁二烯胶乳中,用于生产阻燃绝缘橡胶电缆、保温泡沫塑料、传送皮带及软管中等。可用于全部不饱和树脂中,如层压大顶棚及墙体,用于盥洗室器具、装饰墙板、各种套罩、汽车防护罩、卡车零部件等,以及电子元件包括绝缘体及线路板。还包括建筑施工用具等。
氢氧化铝用于环氧树脂及酚醛树脂中,包括胶粘剂、层压制件、线路板、仿大理石及陶瓷用具等。
氢氧化铝用于交联丙烯酸树脂阻燃及装饰,作顶棚、水槽、盥洗室面板、装饰材料及贴墙板等。
在热塑性塑料方面,由于卤化物对环境的影响越来越受到关注,特别是在欧洲,氢氧化铝越来越受到重视。其应用范围也越来越大。在软、硬PVC,乙丙橡胶、EPDM,EVAC,乙烯-丙烯酸乙酯共聚物、PE-LD,PE-HD,PE与PP的混合物,利用茂催化技术制造的塑料等。另外,在电线电缆、导管、管道、胶粘剂、建筑用的层压板、隔热泡沫方面也得到普遍应用。
氢氧化铝可以提供生烟度较低的配方。与含卤化物和氧化锑混合物的配方相比,该种配方生烟毒性低、腐蚀性也小。根据聚合物以及要求不同,氢氧化铝质量分数为5%~75%,在非卤系统中,一般为35%~65%.在此应用范围有时会增加混合物黏度,并对树脂的物理性能产生负面影响。采用合适的助剂,合理的搅拌技术能使氢氧化铝充分地分散,极大地降低上述影响。氢氧化铝经适当的表面处理也能减少因填充率高而产生的影响,可能增加材料的成本。

氢氧化镁

氢氧化镁是销售量第二大无机氢氧化物阻燃剂。是一种白色至浅白色晶状体粉末,相对密度2.4,莫氏硬度3.0。加热至450℃以上时,因失去水而减重30.9%(质量分数)。
氢氧化镁作为阻燃剂时,其纯度要求相当高,至少含98.5%的氢氧化镁,许多等级高于99.5%。大多数阻燃等级为白色粉末,颗粒直径范围从0.5~5 μm不等。表面积为7~15 平方米/g。大多数作为阻燃剂的氢氧化镁经表面处理,以提高其在聚合物中的分散性和分布。氢氧化镁与氢氧化铝一样以较高的添加量使用,一般为50%~70%。由于高纯度要求和表面处理要求,使得氢氧化镁比沉淀级的氢氧化铝贵。
氢氧化镁用于加工温度在200~225℃的热塑性塑料及热固性树脂。主要用于EVAC,PP及共混物、ABS及其共混物、含氟聚合物、PPE及共混物、聚酰亚胺等。不能用于热塑性聚酯。氢氧化镁与氢氧化铝一起使用,以满足不同使用要求。电线电缆、机架、建筑多层板、管道、电器等零件中也会用氢氧化镁。

4

硅化合物

硅化合物是新型阻燃剂。它可完全不依赖卤素和磷的化合物而发挥阻燃作用。最近有关硅阻燃剂的文章和专利成为新热点。所有各种组成的硅被用作阻燃剂研究。含硅合物无论是作为聚合物的添加剂还是与聚合物组成共混物,都具有明显的阻燃作用。
实用化的含硅化合物阻燃技术有:
通过接枝反应,在高分子引入硅原子或硅基团;
 添加硅树脂粉末;
加入高分子量硅油与有机金属化合物、白炭黑;
硅橡胶与金属化合物并用;
聚合物/粘土纳米复合材料;
加主硅酸盐;
硅胶与碳酸钾并用;
含硅的低熔点玻璃。
含硅阻燃剂及其阻燃剂技术目前得到广泛的研究,含硅阻燃的高聚物大多少烟无毒,燃烧热值低,火焰传播慢,因而受到重视,其发展潜力和应用前景是十分巨大和广阔的。

阻燃剂的阻燃机理

1

卤系阻燃剂

卤系阻燃剂包括溴系和氯系阻燃剂。卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一。在卤系阻燃剂中大部分是溴系阻燃剂。工业生产的溴系阻燃剂可分为添加型、反应型及高聚物型三大类,而且品种繁多。国内外市场上现有20种以上的添加型溴系阻燃剂,10种以上的高分子型溴系阻燃剂,20种以上的反应型溴系阻燃剂。添加型的阻燃剂主要有十溴二苯醚(DBDPO).四溴双酚A双(2,3一二烷丙基)醚(TBAB)、八溴二苯醚(OBDPO)等;反应型阻燃剂主要有四溴双酚A (TBBPA), 2, 4, 6-三溴苯酚等;高分子型阻燃剂主要有溴化聚苯乙烯、溴化环氧、四溴双酚A碳酸酯齐聚物等。溴系阻燃剂之所以受到青睐,其主要原因是它的阻燃效率高,而且价格适中。

由于C-Br键的键能较低,大部分溴系阻燃剂的分解温度在200℃ -300℃,此温度范围正好也是常用聚合物的分解温度范围。所以在高聚物分解时,溴系阻燃剂也开始分解,并能捕捉高分子材料分解时的自由基,从而延缓或抑制然烧链的反应,同时释放出的HBr本身是一种难燃气体,可以覆盖在材料的表面,起到阻隔与稀释氧气浓度的作用。这类阻燃剂无不例外的与锑系(三氧化二锑或五氧化二锑)复配使用,通过协同效应使阻燃效果得到明显提高。

卤系阻燃剂主要在气相中发挥阻燃作用。因为卤化物分解产生的卤化氢气体,是不燃性气体,有稀释效应。它的比重较大,形成一层气膜,覆盖在高分子材料固相表面,可隔绝空气和热,起覆盖效应。更为重要的是,卤化氢能抑制高分子材料燃烧的连锁反应,起清除自由基的作用。以溴化物为例,其抑制自由基连锁反应的机理如下:

含溴阻燃剂 → Br·

Br·+RH→R·+HBr

HO·+HBr=H2O +Br·

 高分子材料中加入的含溴阻燃剂,遇火受热发生分解反应,生成自由基Br·,它又与高分子材料反应生成溴化氢,溴化氢与活性很强的OH·自由基反应,一方面使得Br再生,一方面使得OH·自由基的浓度减少,使燃烧的连锁反应受到抑制,燃烧速度减慢,直至熄灭。

 但是当发生火灾时,由于这些材料的分解和燃烧产生大量的烟尘和有毒腐蚀性气体造成“二次灾害”,且燃烧产物(卤化物)具有很长的大气寿命,一旦进入大气很难去除,严重地污染了大气环境,破坏臭氧层。另外,多溴二苯醚阻燃的高分子材料的燃烧及裂解产物中含有有毒的多溴代二苯并二惡烷(PBDD)及多溴代二苯并呋喃(PBDF)。1994年9月,美国环境保护局评价证明了这些物质对人和动物是致毒物质。

2

磷及磷化合物的阻燃机理

磷及磷化合物很早就被用作阻燃剂使用,对它的阻燃机理研究得也较早,起初发现使用含磷阻燃剂的材料燃烧时会生成很多焦炭,并减少了可燃性挥发性物质的生产量,燃烧时阻燃材料的热失重大大降低,但阻燃材料燃烧时的烟密度比未阻燃时增加。根据上面的事实提出了一些阻燃机理。从磷化合物在不同反应区内所起阻燃作用可分为凝聚相中阻燃机理和蒸汽相中阻燃机理,有机磷系阻燃剂在凝聚相中发挥阻燃作用,其阻燃机理如下:

在燃烧时,磷化合物分解生成磷酸的非燃性液态膜,其沸点可达300℃。同时,磷酸又进一步脱水生成偏磷酸,偏磷酸进一步聚合生成聚偏磷酸。在这个过程中,不仅由磷酸生成的覆盖层起到覆盖效应,而且由于生成的聚偏磷酸是强酸,是很强的脱水剂,使聚合物脱水而炭化,改变了聚合物燃烧过程的模式并在其表面形成碳膜以隔绝空气,从而发挥更强的阻燃效果。

磷系阻燃剂的阻燃作用主要体现在火灾初期的高聚物分解阶段,因其能促进聚合物脱水发化,从而减少聚合物因热分解而产生的可燃性气体的数量,并且所生成的碳膜还能隔绝外界空气和热。通常,磷系阻燃剂对含氧聚合物的作用效果最佳,主要被用在含羟基的纤维素、聚氨酯、聚酯等聚合物中。对于不含氧的烃类聚合物,磷系阻燃剂的作用效果就比较小。

含磷阻燃剂也是一种自由基捕获剂,利用质谱技术发现,任何含磷化合物在聚合物燃烧时都有PO·形成。它可以与火焰区域中的氢原子结合,起到抑制火焰的作用。另外,磷 系阻燃剂在阻燃过程中产生的水分,一方面可以降低凝聚相的温度,另一方面可以稀释气相中可燃物的浓度,从而更好地起到阻燃作用。

3

无机阻燃剂的阻燃机理

无机阻燃剂包括氢氧化铝、氢氧化镁、膨胀石墨、硼酸盐、草酸铝和硫化锌为基的阻燃剂。氢氧化铝和氢氧化镁是无机阻然剂的主要品种,它具有无毒性和低烟等特点它们由于受热分解吸收大量燃烧区的热量,使燃烧区的温度降低到燃烧临界温度以下燃烧自熄:分解后生成的金属氧化物多数熔点高、热稳定性好、覆盖于燃烧固相表面阻挡热传导和热辐射,从而起到阻燃作用。同时分解产生大量的水蒸气,可稀释可燃气体,也起到阻燃作用。
水合氧化铝有热稳定性好,在300℃下加热2h可转变为AlO(OH),与火焰接触后不会产生有害的气体,并能中和聚合物热解时释放出的酸性气体,发烟量少,价格便宜等优点,因而它成为无机阻燃剂中的重要品种。水合氧化铝受热释放出化学上结合的水,吸收燃烧热量,降低燃烧温度。在发挥阻燃作用时,主要是两个结晶水起作用,另外,失水产物为活性氧化铝,能促进一些聚合物在燃烧时稠环炭化,因此具有凝聚相阻燃作用。从该机理可知使用水合氧化铝作阻燃剂,添加量应较大。
镁元素阻燃剂主要品种为氢氧化镁,是近几年来国内外正在开发的一种阻燃剂,它在340℃左右开始进行吸热分解反应生成氧化镁,在423℃下失重达最大值,490℃下分解反应终止。从量热法得知,其反应吸收大量热能(44.8KJ/mol) ,生成的水也吸收大量热能,降低温度,达到阻燃。氢氧化镁的热稳定性和抑烟能力都比水合氧化铝好,但由于氢氧化镁的表面极性大,与有机物相容性差,所以需要经过表面处理后才能作为有效的阻燃剂。另外,它的热分解温度偏高,适宜热固性材料等分解温度较高的聚合物的阻燃。
在高温下,可膨胀石墨中的嵌入层受热易分解,产生的气体使石墨的层间距迅速扩大到原来的几十倍至几百倍。当可膨胀石墨与高聚物混合时,在火焰的作用下,可在高聚物表面生成坚韧的炭层,从而起到阻燃作用。硼酸盐阻燃剂有硼砂、硼酸和硼酸锌。目前主要使用的是硼酸锌。硼酸锌在300℃开始释放出结晶水,在卤素化合物的作用下,生成卤化硼、卤化锌,抑制和捕获游离的羟基,阻止燃烧连锁反应;同时形成固相覆盖层,隔绝周围的氧气,阻止火焰继续燃烧并具有抑烟作用。硼酸锌可以单独使用,也可与其它阻燃剂复配使用。目前,主要产品有细粒硼酸锌、耐热硼酸锌、无水硼酸锌和高水硼酸锌。
草酸铝是氢氧化铝衍生的结晶状物,碱含量低。含有草酸铝的高聚物燃烧时,放出H20, CO及CO2,而不生成腐蚀性气体,草酸铝还能降低烟密度和生烟速度。由于草酸铝的碱含量低,所以用其阻燃的电线、电缆的包覆料时,不影响材料的电气性能。现在已开发的5种以硫化锌为基的阻燃剂,其中4种用于硬质PVC,另一种可用于软质PVC,聚烯径和尼龙。这类阻燃剂可提高材料的抗老化性能,且与玻纤有好的相容性和提高聚烯烃的热稳定性。

4

混合使用的协同阻燃机理

含卤阻燃剂与含磷阻燃剂配合使用能产生显著的协同效应。对于卤-磷阻燃协同效应,人们提出卤-磷配合使用能互相促进分解,并形成比单独使用具有更强阻燃效果的卤-磷化合物及其转化物PBr3、 PBr·、POBr3等。用裂解气相色谱、差热分析、差示扫描量热分析、氧指数测定、阻燃剂程序升温观察等方法对卤一磷协同效应进行的研究表明,卤-磷配合使用时阻燃剂的分解温度比单独使用时略低,且分解非常剧烈,燃烧区的氯磷化合物及其水解产物形成的烟气云团能较长时间逗留在燃烧区,形成强大的气相隔离层。
关于磷-氮相互作用机理研究得不够完善,一般认为用氮化物(如尿、氰胺、胍、双氰胺、羟甲基三聚氰胺等)能促进磷酸与纤维素的磷酰化反应。形成的磷酸胺更易于纤维素发生成酯反应,这种酯的热稳定性较磷酸酯的热稳定性好。磷-氮阻燃体系能促使糖类在较低温度下分解形成焦炭和水,并增加焦炭残留物生产量,从而提高阻燃效果。磷化物和氮化物在高温下形成膨胀性焦炭层,它起着隔热阻氧保护层的作用,含氮化合物起着发泡剂和焦炭增强剂的作用。基本元素分析得知,残留物中含氮、磷、氧三种元素,它们在火焰温度下形成热稳定性的无定形物,犹如玻璃体,作为纤维素的一个绝热保护层。

5

膨胀体系的阻燃机理

膨胀型阻燃体系主要成分可分为酸源、碳源、气源三个部分。酸源一般为无机酸或加热至100^-250℃时生成无机酸的化合物,如磷酸、硫酸、硼酸、各种磷酸铵盐、磷酸酯和硼酸盐等;碳源(成炭剂)是形成泡沫炭化层的基础,一般为富碳的多羟基化合物,如淀粉、季戊四醇和它的二聚物、三聚物以及含有轻基的有机树脂等;气源(发泡源)多为胺或酰胺类化合物,如三聚氰胺、双氰胺、聚磷酸胺等。
膨胀体系成炭的结构复杂,影响因素众多。聚合物主体的化学结构和物理特性、膨胀阻燃剂的组成、燃烧和裂解时的条件(如温度和氧含量)、交联的反应速率等等诸多因素都会对膨胀成炭的结构产生影响。而膨胀炭层的热保护效应不仅取决于焦炭产量、炭层高度、炭层结构、保护炭层的热稳定性,也取决于炭层的化学结构,尤其是环状结构的出现增加了热稳定性,此外还有化学键的强度以及交联键的数量。
普遍认为膨胀体系的阻燃机理为凝聚相阻燃,首先聚磷酸胺受热分解,生成具有强脱水作用的磷酸和焦磷酸,使季戊四醇酯化,进而脱水炭化,反应形成的水蒸汽及三聚氰胺分解的氨气使炭层膨胀,最终形成一层多微孔的炭层,从而隔绝空气和热传导,保护聚合物主体,达到阻燃目的。
膨胀型阻燃剂添加到聚合物材料中,必须具备以下性质:热稳定性好,能经受聚合物加工过程中200℃以上的高温;由于热降解要释放出大量挥发性物质,并形成残渣,因而该过程不应对膨胀发泡过程产生不良影响;该类阻燃剂系均匀分布在聚合物中,在材料燃烧时能形成一层完全覆盖在材料表面的膨胀炭质;阻燃剂必须与被阻燃高聚物有良好的相容性,不能与高聚物和添加剂发生不良作用,不能过多恶化材料的物理、机械性能。膨胀型阻燃剂优于一般的阻燃剂之处在于无卤、无氧化锑:低烟、少毒、无腐蚀性气体;膨胀阻燃剂生成的炭层可以吸附熔融着火的聚合物,防止其滴落传播火灾。

6

阻燃—铂金催化效应

根据上面提到的观察结果,推测出由铂化合物在高温下引发反应,在 FR-029中起到了阻燃作用。给出了 FR-029在大约 400°C~500 °C下热处理过程中亚甲基键结构的形成过程。首先,在较高温度下,由于铂化合物的催化作用使材料中 S i-CH3键发生均裂,产生了一个甲基和一个甲硅烷基自由基。生成的甲基自由基从另一个甲基基团上吸收一个氢原子,生成一个甲烷分子和一个链上连接的亚甲基自由基。然后该亚甲基自由基攻击一个邻近硅氧烷链上的硅原子,在硅氧烷材料中形成亚甲基结构,同时产生一个新的甲基自由基。 另一方面,产生的甲硅烷基自由基同时攻击硅氧烷链上的氧原子或二氧化硅上的硅醇基团,形成三官能。

铂金阻燃剂机构表一

铂金阻燃剂机构表二

阻燃剂的五大功能


1

阻燃—冷却效应

一些阻燃剂能够吸收塑料在燃烧时所释放的热量,使燃烧的塑料温度下降,防止它继续降解或裂解,中断可燃气体的来源,使火焰熄灭,如有机磷氮膨胀型阻燃剂;例如,硼砂具有10个分子的结晶水, 由于释放出结晶水要夺取141.8kJ/mol热量,因其吸热而使材料的温度上升受到了抑制,从而产生阻燃效果。水合氧化铝的阻燃作用也是因其受热脱水产生吸热效应的缘故。另外,一些热塑性聚合物裂解时常产生的熔滴,因能离开燃烧区移走反应热,也能发挥一定的阻燃效果。

2

抑烟—隔绝效应

在燃烧过程中产生不燃性气体或泡沫层,或形成一层液体或固体覆盖层,使燃烧过程因无氧补充而中止,如卤素阻燃剂、膨胀型石墨和多元醇及聚乙烯醇等。

覆盖效应其作用是在较高温度下生成稳定的覆盖层,或分解生成泡沫状物质,覆盖于高聚物材料的表面,使燃烧产生的热量难以传入材料内部,使高聚物材料因热分解而生成的可燃性气体难于逸出,并对材料起隔绝空气的作用,从而抑制材料裂解,达到阻燃的效果。如磷酸酯类化合物和防火发泡涂料等可按此机理发挥作用。

3

散热—消除自由基

在燃烧过程中能消除裂解或热解产生的自由基O·及OH·,使燃烧的链反应中段,切断可燃气体的来源,如卤素阻燃剂。高聚物的燃烧主要是自由基连锁反应,有些物质能捕捉燃烧反应的活性中间体HO·、H ·、·O·、HOO·等,抑制自由基连锁反应,使燃烧速度降低直至火焰熄灭。常用的溴类、氯类等有机卤素化合物就有这种抑制效应。

4

防滴—稀释效应

在燃烧时能释放出惰性气体,稀释可燃气体及燃烧区域中的氧的浓度,使燃烧不能进行,如硼化合物与钼化合物。

此类物质在受热分解时能够产生大量的不燃性气体,使高聚物材料所产生的可燃性气体和空气中氧气被稀释而达不到可燃的浓度范围,从而阻止高聚物材料的发火燃烧。能够作为稀释气体的有CO2, NH3, HCl和H2O等。磷酸胺、氯化胺、碳酸胺等加热时就能产生这种不燃性气体

5

阻燃—铂金催化效应

根据上面提到的观察结果,推测出由铂化合物在高温下引发反应,在 FR-029中起到了阻燃作用。给出了 FR-029在大约 400°C~500 °C下热处理过程中亚甲基键结构的形成过程。首先,在较高温度下,由于铂化合物的催化作用使材料中 S i-CH3键发生均裂,产生了一个甲基和一个甲硅烷基自由基。生成的甲基自由基从另一个甲基基团上吸收一个氢原子,生成一个甲烷分子和一个链上连接的亚甲基自由基。然后该亚甲基自由基攻击一个邻近硅氧烷链上的硅原子,在硅氧烷材料中形成亚甲基结构,同时产生一个新的甲基自由基。另一方面,产生的甲硅烷基自由基同时攻击硅氧烷链上的氧原子或二氧化硅上的硅醇基团,形成三官能。

各类典型的阻燃剂

1、氯系阻燃剂

近来,氯系阻燃剂已部分为溴系阻燃剂取代,氯系在整个阻燃剂的消耗量中有所下降。

A、氯化石蜡(C20H24Cl18~C24H29Cl21)

含氯量50%的主要用作PVC塑料的辅助增塑剂;含氯量70%的主要用作阻燃剂。

B、氯化聚乙烯

一类含氯35%-40%,另一类含氯68%,无毒。可用于聚烯烃,ABS树脂等。

它本身是聚合材料,因此作为阻燃剂使用时和树脂体系相容性好,不影响塑料的物理机械性能,耐久性良好。


2、溴系阻燃剂

A、四溴双酚A

     

性质:灰白色粉末。熔点180-184℃,沸点316℃(分解)。

用途:广泛用作反应型阻燃剂以制造含溴环氧树脂和含溴聚碳酸酯以及作为中间体合成其他复杂的阻燃剂,也作为添加型阻燃剂用于ABS、HIPS、不饱和聚酯、硬质聚氨酯泡沫塑料、胶黏剂以及涂料等。既可作添加型阻燃剂,又可作为反应型阻燃剂。

B、十溴二苯醚

     

性质:白色微细粉末,溶点为304-309℃,溴含量大约83.3%,几乎不溶于所有溶剂,5%热量失重时温度大于320℃,热稳定性好。

用途:添加型阻燃剂,用途广泛;可用于PE、PP、ABS树脂、环氧树脂、PBT树脂、硅橡胶、三元乙橡胶及PET、PA6等材料的阻燃剂。其与Sb2O3并用阻燃效果更佳。缺点是耐侯性差,容易黄变。

3、磷系阻燃剂

磷系阻燃剂包括无机磷系阻燃剂和有机磷系阻燃剂。

A、无机磷系阻燃剂

红磷、聚磷酸铵(APP)、磷酸铵盐、磷酸盐及聚磷酸盐等。

阻燃机理:燃烧时生成磷酸、偏磷酸、聚偏磷酸等,覆盖于树脂表面,可促进塑料表面炭化成炭膜;聚偏磷酸则呈黏稠状液态覆盖于塑料表面。这种固态或液态膜能阻止自由基逸出,又能隔绝氧气。

磷系与氮系及金属氢氧化物等阻燃剂都有协同作用,并用可产生协同阻燃和消烟效果。

无机磷系阻燃剂的耐水性差,与聚烯烃的相容性差,致使制品的力学性能下降,所以在聚烯烃中用量少。

①、红磷

红色至紫红色粉末,因仅含有磷元素,所以比其他磷化物阻燃效率高。如7.5%红磷填充PA的氧指数可达35%,而加入15%磷酸酯阻燃剂的PA氧指数仅为28%。

红磷的缺点为与树脂的相容性差、易吸湿、颜色太深。红磷进行微囊化处理后,与树脂的相容性提高,吸湿性降低,但需防止红磷与氧及水接触而生成剧毒的磷化氢,必须加入磷化氢捕捉剂。

②、聚磷酸铵(APP)

      

性质:白色粉末,随聚合度增大而吸水性降低。APP在250℃以上分解,释放出水和氨,并生成磷酸,阻燃机理为吸热降温和稀释可燃气体。APP由于分子内含有磷和氮,具有很好的协同作用,阻燃效果很好,主要用于防火涂料中。

B、有机磷系阻燃剂

磷酸酯、磷杂菲(DOPO),磷腈化合物、有机次膦酸以及有机次膦酸盐等。

阻燃机理:与无机磷系阻燃剂类似。

①、磷酸酯

       

磷酸酯中主要包括磷酸三甲苯酯(TCP)、二苯基磷酸甲苯酯(CDP)和磷酸三苯酯(TPP)等,脂肪族磷酸酯中较重要的有磷酸三辛酯(TOP)。

有机磷系阻燃剂与树脂的相容性好,可保持树脂的透明性;缺点为热稳定性差、易水解、析出性大等。

优点为阻燃和增塑双功能,阻燃无卤化。由于有机磷系阻燃剂大多为油状,与粒状树脂不易混合,因此常用于热固性不饱和聚酯、聚氨酯、软PVC、PVC糊树脂及纤维素树脂等。

②、磷杂菲(DOPO)

反应型阻燃剂,目前应用仅局限于环氧树脂中,市场空间尚未明显扩大。吸水率高,在300℃左右分解,耐热性较差。

        

③、磷腈化合物

添加型阻燃剂,用于大规模集成电路封装、环氧树脂、LED发光管及其它高分子材料的阻燃。阻燃效果好,耐热性优异,但价格偏贵。

   

3、氮系阻燃剂

常用品种有三聚氰胺、三聚氰胺氰尿酸盐(MCA)等,往往需加入协同剂,用于PA、PU、PO、PET、PS、PVC等树脂中。氮/磷为最常用的协同阻燃体系。

阻燃机理:这类阻燃剂主要通过分解吸热及生成不燃性气体以稀释可燃物而发挥作用。以及与磷的协同阻燃作用。

①、三聚氰胺氰尿酸盐(MCA)

4、膨胀型阻燃剂

膨胀型阻燃剂不是单一的阻燃剂品种,是以磷、氮、碳为主要成分的无卤复合阻燃剂,其体系内自身具有内协同作用。由于此类阻燃剂在受热时发泡膨胀,所以称为膨胀型阻燃剂。

膨胀型阻燃剂基本克服了传统阻燃技术中的缺点,优点如下:高阻燃性、无熔滴行为,对长时间或重复暴露在火焰中有较好的抵抗性;无卤、无锑;低烟、少毒、无腐蚀性气体产生。 

膨胀型阻燃剂由三个部分组成:酸源(脱水剂)、炭源(成炭剂)、气源(发泡源)

A、酸源

一般为无机酸或无机酸化合物,可与树脂作用,促进炭化物的生成。品种:磷酸、硫酸、硼酸、磷酸铵盐、磷酸酯、磷酸盐及聚磷酸铵等,以聚磷酸铵最为常用。

B、炭源

主要为一些含碳量较高的多羟基化合物或碳水化合物,如树脂本身、淀粉、季戊四醇及其二聚体和三聚体等。

C、气源

为含氮类化合物如铵类和酰胺类,具体有尿素、三聚氰胺、聚磷酸铵、聚氨酯、聚脲树脂等。氮化合物除起发泡作用外,对炭化层的形成也有促进作用(形成多孔泡沫炭层)。

①、三聚氰胺聚磷酸盐(MPP)

属于磷—氮系膨胀性阻燃剂,含磷15%,含氮40.7%。

  

它既可以单独作为阻燃剂使用,也可以作为辅助型阻燃添加剂,广泛用于尼龙、PBT、聚烯烃、电线电缆以及合成橡胶、PU、环氧树脂、防火涂料等。

优点:含氮量高、价格低廉、阻燃效率高、优异的电性能和机械性能、不变色、低烟、低腐蚀性。同时它低毒,对使用者安全,与环境相容性好,良好的热稳定性,但加工性稍差。

5、无机氢氧化物阻燃剂

无机氢氧化物易处理,相对无毒,不产生有毒、有腐蚀性的气体,而且抑烟,更重要的是比卤、磷阻燃体系便宜。

①、氢氧化铝(ATH)

氢氧化铝是无机氢氧化物销售最多的阻燃剂,主要用于加工温度在200℃以下的人造橡胶、热固性树脂及热塑性塑料。氢氧化铝阻燃的塑料在火焰中发烟性较小是一个突出的优点。

α-氢氧化铝呈白色粉末状,相对密度2.42,莫氏硬度3 .0。它具有无毒、无味、分散性好、白度高、含铁量低等特点,氢氧化铝的用途非常广泛,其用途表现在以下几个方面:人造大理石填料;氯乙烯糊、环氧树脂、不饱和聚酯树脂以及其他塑料制品的阻燃填料;催化剂和催化剂载体;牙膏填料;造纸填料及涂覆剂;集成电路及光学用高纯玻璃特殊填料和高纯铝盐填料及纤维后加工助剂等等。

  氢氧化铝又称三水合氧化铝(α-Al2O3·3H2O ),简称ATH,经超细化后广泛用作合成材料的环保无卤阻燃剂,能与各种有机阻燃剂配合使用产生协效作用,提高材料的阻燃性能及物理机械强度。ATH受热脱水分解,吸热量达1967.2J/kg,能有效抑制聚合物的升温和热降解。ATH分解释出大量水蒸气能稀释可燃气体,抑制燃烧蔓延。ATH紧密堆积的双层晶体结构能捕捉引发聚合物燃烧的羟基自由基,断绝连锁反应。ATH脱水后在聚合物表面形成耐高温致密Al2O3保护膜,隔绝空气防止火焰蔓延。耐高温致密Al2O3保护膜还能促进聚合物碳化,吸附固体颗粒,抑制浓烟产生。

  氢氧化铝是目前世界上用量最大的无机阻燃剂之一,它具有阻燃、消烟、填充三大功能,在燃烧时无二次污染,热解时不产生有毒和有腐蚀性的气体、并吸热和放出水蒸汽,具有阻燃自熄性能。它不但在聚烯烃中分散性好,且易于与其他添加物质产生阻燃协同效应,另外由于结晶水的存在,还可使聚合物制品赋予抗静电功能,同时使高分子聚合物的强度和韧性等性质得到改善和提高。

产品特点:

1.优异的阻燃抑烟性能——受热脱水分解,脱水后在可燃物表面生成A1203保护膜隔绝氧气,使可燃性气体和氧气的浓度下降,有效抑制聚合物的升温和热降解,通过吸附作用抑制烟气的产生,使之碳化而不易产生可燃性挥发物,阻止燃烧,适用于加工成型温度低于200℃的复合材料。

2.良好的绝缘性能——流态化提纯工艺大大降低了铁钠钾等杂质离子的含量。

3.高白度——不干扰复合材料制品染色。

4.低铁——含量低于双零五(即0.005%)以下。

5.低钠—含量低于0.15以下

使用指导:

1. 单独使用应根据制品的性能要求进行选择,粒径与复合材料性能密切相关,粒径越小,表面细腻度越好,增强效果越显著,但共混时黏度也越大,请细心调整配方以平衡各项性能。

2. 选用不同粒径混杂填充,在适当的比例下能在高分子体系内形成致密填充,提高阻燃效果。合理的复配体系能避免填料沉降或上浮,同时降低等量填充下树脂共混物的黏度,有利剪切分散。

3. 氢氧化铝经超细化后由于比表面积增大,易团聚,与聚合物的相容性差,难以均匀分散,影响复合材料的加工性能。疏水型氢氧化铝与高分子的界面相容性良好,表面的包覆层能跟基材树脂的基团产生键合反应,降低共混物黏度,消除界面应力集中,改善复合材料力学性能。因此推荐使用疏水型产品。

                  ②、氢氧化镁(MDH)

氢氧化镁是一种热稳定性更好的无机阻燃剂,超过300℃仍然稳定,广泛用于许多人造橡胶、树脂、包括工程塑料及其他在高温加工下的树脂。在聚合物体系中起到阻燃,消烟的作用。

两者复合使用,互为补充,其阻燃效果比单独使用更好。

一.锑系阻燃剂

1、 三氧化二锑(656℃熔点)2、五氧化锑(70℃分解)3、锑的卤化物-三氯化锑和五氯化锑4、锑系阻燃协效机理

缺点:重金属,有毒,与砷同系物,粗产品中一般含砷等其他重金属,三氧化二砷是砒霜。不能用作绿色填料及绿色阻燃。

二.氢氧化铝阻燃剂(ATH)

1、氢氧化铝理化性能 2、氢氧化铝阻燃剂的制造方法 3、氢氧化铝阻燃剂的应用

优点:价格低,阻燃性好。

缺点:耐热性差,200℃即开始脱水,330℃到350℃即完全脱水,而树脂的固化多在氢氧化铝脱水温度区间内,因而导致合成树脂成品内发泡,表面不平整、介电性能下降,成品率低。应用于高温导致硅胶起雾,产品发白起泡,介电性下降等。EC≈60~100μS/cm,易吸潮。

三.氢氧化镁阻燃剂

1、氢氧化镁的理化性能 2、氢氧化镁阻燃剂的制造方法 3、氢氧化镁阻燃剂的应用(430℃分解)无毒

缺点:不耐酸,醋酸都能将氢氧化镁溶解,只适合做低档产品。易吸潮,介电性差。

四.高耐热勃姆石阻燃剂(Boehmite, ALOOH)

1、勃姆石的理化性能 2、勃姆石阻燃剂的制造方法 3、勃姆石阻燃剂的应用

优点:1%脱水温度达350℃以上,500℃脱水达到峰值,EC<50μS/cm,介电性强,解决了氢氧化铝因脱水温度低而导致产品缺陷及介电性降低的问题,耐酸碱性强。

缺点:阻燃性略低于氢氧化铝,达到同样阻燃性能需多加。但其最大特点是高耐热,兼具导热性,耐酸碱,制成高耐热性功能材料可提高产品附加值。

五.含磷无机阻燃剂

缺点:色泽鲜艳,因而应用受到部分限制,受聚合度限制,不耐水洗、成本高。

1、 红磷阻燃剂(赤磷危险)红磷加热时会产生极毒的磷化氢必须加入磷化氢捕捉剂

2、 磷酸二氢铵(磷酸一铵)一盐基磷酸铵(熔点190℃)微溶于醇不溶于丙酮

3、 磷酸氢二铵(二碱式磷酸铵;二盐基磷酸铵;双盐基磷酸铵)

4、 磷酸三铵(磷酸铵三盐基磷酸铵)

5、聚磷酸铵(APP)与有机阻燃剂相比价廉、毒性低是较理的无机阻燃剂,热稳定

六.含硼阻燃剂

缺点:耐热性一般,阻燃性一般,需大量填充。

1、水合硼酸锌(FB阻燃剂)无毒无污染、无机阻燃剂、熔点980℃,300℃上失去结晶水

2、硼酸锌的阻燃机理 3、硼酸锌的用途 4、硼酸锌的应用实例 5、偏硼酸钡

七.含钼阻燃剂及抑烟剂 缺点:价格极高,不能被一般企业接受。

1、三氧化钼、795℃熔点750℃升华、不溶于水易溶于碱生成钼酸盐,可溶于浓硝酸和浓盐酸或浓硝酸和浓硫酸的混合溶液

3、钼酸钠、熔点687℃溶于水

八.有机阻燃剂

一)反应型含溴阻燃剂 缺点:含卤阻燃剂由于对人体健康和環境的不良影响而被越來越多的国家禁用。

1、 四溴双酚A(TBA或TBBPA)熔点175℃-181℃分解温度240℃,295℃时迅速分

解、使用加工温度220℃,不溶于水、溶于碱的水溶液乙醇、丙酮苯水醋等有机溶液、溴含量:57~58%

2、 四溴双酚A双(羟乙氧基)醚(EO TBBA)溶点115-118℃失重5%不低于300℃微溶于于水,溶于苯、丙酮、近于无毒

3、 四溴双酚A烯丙基醚、(四溴醚)熔点110~120℃含溴量51%不溶于水、可溶于氯苯及氯化烃溶剂中、添加型用于可发性聚苯乙烯

4、 四溴邻苯二甲酸酐(TBPA)熔点273~280℃含溴67~68.9%开始分解400℃不溶于水及脂肪族烃类溶剂、可溶于硝基苯、二甲基甲酰胺微溶于丙酮、二甲苯氯代溶剂、二氧(口恶)烷、抗静电效果

5、 三溴 苯酚、(TBP)黄色粉末熔占86-92℃理论含溴量58.8%不溶于水

6、 双反丁烯二酸酯(FR-2)熔点65-68℃含溴量62%,5%热失重时温度>220℃,不溶于水有毒

二溴苯基缩水甘油醚、(BGE-48)黄色到棕色透明液体、含溴量46-52%不浓于水,粘度25℃时150厘泊左右

(二)添加型含溴阻燃剂 缺点:含卤阻燃剂由于对人体健康和環境的不良影响而被越來越多的国家禁用。

1、1,2.二(2,4,6-三溴苯氧基)乙烷。(FR-3B)熔点223-225℃含溴量68-70%不溶于水、5%热失重温度≥310℃。耐光、耐酸、耐碱。和电绝缘。

2、 十溴二苯醚(DB口PO,FR-10,ZR-10,FG十溴联苯醚)熔点304~309℃,含溴量>82%,粒度:200目,几乎不溶于所有溶剂、5%热失重时温度>320℃ 稳定性好、无毒、无污染、耐光性稍差。

3、 三异氰酸酯、(TBC)二溴丙基、熔点100-110℃热失重5%时温度为265℃。不溶于水含溴量65~66% 。

4、 三(2,3一二溴丙基)磷酸酯、(FR-1)淡黄色晶体,含溴量68.7%,不溶于水、有致癌毒性、不少国家法令禁用。

5、 三(2,3二溴丙基)硼酸酯、(FR-B)浅黄一琥珀色油状液体,理论含溴量72.4%不容于水。

6、 四溴乙烷、(TBE) 含溴量淡黄色液体。不溶于水、热稳定性差。

7、 四溴丁烷(TBB) 熔点110-119℃分解温度150℃。含溴量>85%不溶于水。

8、 四溴双酚A双(2、3、二溴丙基)醚(八溴醚) 白色或淡黄色粉末,熔点:85-105℃ 不溶于水和乙醇,可溶于苯丙酮。含溴量66-67%失重5%温度270℃。

9、 五溴一氯环已烷 熔点:190-195℃,含溴量77.87%含氯量6.82%不溶于水、溶于苯

10、五溴二苯醚、(FR-5) 琥珀色粘稠液体。含溴量69-72%。

11、六溴苯。(HBB) 熔点320~326℃含溴量>85%开始分解温度、220℃,5%热失重温度265℃,有毒。不溶于水、溶于乙醇、乙醚苯,浅黄色粉末或白色。

12、六溴环十二烷、(HBCD) 熔点:198-208℃。含溴量74-75%,5%热失重时温度>210℃,有毒、白色粉末。

13、溴代芳烃磷酸酯、(R-8101)闪点310℃,含溴量≥30%含磷≥5%酸值≤5mgKOH∕g密度1.54g∕cm3

14、聚2,6一二溴苯醚(PBO)软化温度:200~240℃,熔融温度:250~260℃开始分解温度:330℃。含溴量64%、挥发物≤0.5%(100℃,2小时)

(三)氯系阻燃剂缺点:含卤阻燃剂由于对人体健康和環境的不良影响而被越來越多的国家禁用。

1、 四氯双酚A 白色结晶粉末,分子量366,氯含量38.7%熔点133℃以上,不溶于水、无毒 反应型阻燃剂。

2、 四氯苯酐(TCPA)熔点255~257℃含氯量49.6%,沸点371℃不溶于冷水、白色无味或形成针状结晶,可升华、在水中煮沸时、易变成四氯代笨二甲酸,易溶于乙醚。

3、 六氯笨、(HCB)熔点227℃沸点309~310℃/725毫米汞柱,密度2.044纯六氯笨为无色细长针状结晶。工业品为淡红色结晶略有芳香气味。熔点220℃、密度(23.5℃)2.044 低毒、对皮肤有刺激,损害肝、甲状腺等。

4、 四氯对苯二醌 熔点290℃(加压)小心加热能升华而不溶化。金黄色叶状或棱柱体结晶,对氧化稳定。

5、 六氯环戊二烯:浅黄色油状液体,具有特朱气味、熔点9℃

6、全氯五环癸烷 熔点486℃ 开始分解温度650℃,密度2.02折光率1.630毒性极微,白色结晶粉末,含溴量78.3%忝加型。

7、 氯桥酸酐(HET酸酐)熔点240~245℃氯桥酸达不到熔点即分解为酸酐、氯含量:氯桥酸酐57.4%、氯桥酸54.7%。白色结晶固体、氯桥酸70℃时在水中成为油状液体、加热到96~99℃与水混溶、冷却成为含一个结晶水的氯桥酸、氯桥很难被水解、低毒 避免吸入与皮肤接触。

8、六氯乙烷 封闭试管188.2℃熔化、185℃升华、蒸发潜热193.8」/克、比热(25℃)0.728」∕克℃,蒸气密度6.30克」升、蒸气压(30℃)266.6PQ,

9、 环氧氯丙烷(表氯醇)无色液体,有和氯仿,乙醚相似的气味、凝固点-57.2℃沸点116.2℃,

10、三氯乙醛、(氯油)无色油状液体、特殊刺激味、熔点47℃沸点97.7℃

11、氯化石蜡-42(氯烃-42)本品为金黄白色琥珀色粘稠液体。不溶于水、乙醇分解温度大于110℃。

12、氯化石蜡-52(氯烃-50)浅黄色清澈粘稠液体:无味、无毒、不燃、微溶于醇 、易溶于苯醚,(25℃)密度1.235-1.225、粘度12-16泊,折光率(20℃)1.505~1.515。含氯量50-54%,凝固点-30℃以下,分解温度≥120℃用途能赋子制品一定的光泽和抗张强度。地板革、电缆压延板材,软管。薄膜,橡胶。

13、氯化石蜡-70(氯蜡-70氧烃-70)本品系树脂状白色粉末不溶于水和低级醇。溶于矿物油芳烃、乙醚等。密度25℃1.25~1.7,折光率25℃1.56~1.58。软化点95~120℃本品有较好的阻燃持久性、兼防潮。抗静电、抗拉力、抗压缩、低挥发等性能。多年来氯烃已作为棉织品和其它纺织品的防火、防雷和防水材料,不仅有阻 燃作用。

14、氯化石蜡乳剂, 乳白色半流体、PH7~8,平均粘度65~100厘泊,在湿乳剂 中的氯含量35~45%,在水中的分散性良好。用于乳胶制品、PVC糊树脂制品、防火途料、纤维织物、壁纸通常与胶体氧化配合使用。

15、环氧氢烃。(改性氯化石蜡)浅黄色油状液体。无毒无味、不燃烧不溶于水、微溶于苯醚。比一般氯化石蜡热稳定性高、与树脂相溶性好。用作聚氯乙烯树脂辅助增塑剂 或代替少量主增塑剂、且有阻燃作用。

16、聚偏二氯乙烯(聚偏二氯或PVBC)很难燃烧,火焰呈黄色、端部绿色燃烧时软化。碳化时膨胀,密度30℃1.7~1.875软化点185~200℃,分解温度210-225℃,在室温下不溶于一般溶剂,含氯量70%PVBC是一种含氯树脂、可制做含氯纤维,有较好的难燃性、可做难燃电缆和其它橡胶制品。

17、氯化聚乙烯、(过氯乙烯树脂-CPVC)白色粉未,软化点130~190℃,耐溶剂性良好、具有一定阻燃性、含氯量62~65%。制造耐蚀性阻燃涂料,粘合剂、防水漆、阻燃型氢纶纤维,在电器工业上作具有阻火性和受热性能良好的片材,薄膜和各注射零件。

18、氯化聚乙烯、含氯量25~45%具有优良的耐侯性,耐寒性,耐冲击和阻燃性。含氯量低于25%氯化聚乙烯加入三氧化二锑。稳定剂和填料,可制得阻燃PVC板材。电绝缘材料。主要用于橡胶与并用胶,塑料改性剂、涂料,粘合剂和复合材料的阻燃与改性。

19、氯化聚丙烯。白色粉末、无毒。熔点、100~120℃,分解温度180~190℃,含氯量高达65%,不溶于醇和脂肪烃。硬度、耐摩性、耐酸性、耐盐水、耐燃性均很好。该品一般溶于芳烃配成溶液使用、可做阻燃保护涂层、油黑的拼料也可做粘合剂,纸张涂层。也可用于耐燃燃耐热塑性橡胶。

20、氯磺化聚乙烯、白色或浅黄色弹性体,具有生胶的特性,能溶于芳烃及氯代糨中,不溶民于脂肪烃和醇中。具有耐燃耐老化及耐低温性能绝缘性能 分解温度120℃以上。用于生产耐燃橡胶制品、耐燃浸胶织物涂层、导线绝缘层和其它塑料制品橡塑并用品。

21、氯化磷腈聚合物,白色结晶(三聚物)熔点112.8,密度1.89克∕毫升,沸点256℃,在潮湿环境中由于水解而弹性降低。在300℃以上发生解聚,用于织物阻燃。

(四)有机磷系阻燃剂 

1、 磷酸三酯(B-氯乙基)、TCEP浅黄色油状液体、溶于醇、酮、酯、氯仿、四氯化碳、等溶剂、不溶于脂肪族烃、水中溶解度4.64%(20℃)折光率nd20:1.4731,沸点194℃(1.33kpa) 闪点:265.6℃,粘度:38-47厘泊(20℃),凝固点一64℃。分解温度240-280℃。毒性:白鼠口服LD50:L41克∕公斤。忝加型阻燃剂、同时含磷和氯,阻燃效果显著广泛用于汽罐油等油油类添加剂、聚氨酯泡沫塑料聚氯乙烯阻燃剂。

2、 磷酸三(2,3一二氯丙基)TDCPP 浅黄色粘稠液,密度1.5129(25℃)自燃温度513.9℃ 着火点:2822℃,闪点:251.7℃,沸点:大于200℃(0.53kpa)。凝固点:一6℃,分解温度:230℃,中等毒性:大白鼠LD50:2.83克∕公斤。磷含量7.2%,氯含量49.1%,不挥发及水解,对紫外线稳定性良好。忝加型阻燃剂,用于聚乙烯、不饱和聚酯,环氧树酯,酚醛树脂聚氨酯泡沫塑料,各种纤维后整理,纸张中。含氯及磷无素,阻燃好。

3、 磷酸三丁酯、(RBP)无色无臭液体,色泽(APHA)15,酸度(以磷酸计)0.01%,相对密度0.973~0.978(20℃)粘度(25℃)3.5~12.2厘泊,凝固点<-80℃,沸点:289℃、闪点:193℃、着火点:204℃、微溶于水、甘油、乙二醇,可溶于大多数有机溶剂。毒性LD50:3g∕kg.添加型阻燃剂、有一定阻燃效果,用于聚氯乙烯、聚氨脂炮沫塑料,醋酸纤维素,醋酸丁酸纤维素。

4、 磷酸三辛酯 (TOP)微具气味,近无色液体,密度20℃:0.920~0.926克∕厘米3沸点216℃(0.53kpa)。闪点:207~216℃∕粘度:13~15厘泊(20℃),水中溶解度,25℃时<0.01%,水在本产品中溶解度25℃时约1.4%可与矿物油、汽油混溶,毒性:LD50:38g∕kg添加型阻燃增塑剂,耐寒性,耐光性、防水性、防霉性和绝缘性好用于乙烯基树脂、纤维素树脂、酚醛树脂、聚氨脂和合成橡胶。

5、 磷酸三甲苯酯(磷酸三甲酚酯、TCP)微具气味的清亮粘稠液体色泽(APHA),酸值≤0.15mgKOH∕g,游离甲酚含量≤0.15%,密度(20℃)1.160~1.1180,粘度,78~185厘泊(20℃) 沸点:410℃~440℃,内点(开杯法)215~230℃,不溶于冷水,水在本产品中25℃时精密仪器解度为0.4%,溶于苯,醚类,醇类,亚麻子油、蓖麻油等有机溶剂和油类。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多