1. 库珀对是一种神秘的量子现象。多年来,物理学家一直认为,这种能使超导体在零电阻的情况下导电的电子对,只有两种表现:它们要么非常活跃,行为就像是玻色子一样,使材料形成超导态;要么卡在材料内部无法移动半步,从而使材料成 为绝缘体。 在一篇刊登在《科学》杂志的新论文中,一组物理学家团队发现,库珀对也可以像普通金属那样,在有一定电阻的情况下导电。这一发现描述了一种全新的物质状态,需要新的理论才能加以解释。
过去曾有研究表明,当薄膜超导体在朝着它们的超导温度冷却时,就有可能出现金属状态,但这一过程是否涉及到库珀对一直是个悬而未决的问题。为了检验这一问题,物理学家们在新的研究中开发了一种技术,使他们能够确定在金属状态下,也是由库珀对来负责传输电荷。然而目前并没有人能真正从根本上确定这些库珀对是如何做到这一点的,所以这一新的发现还需要更多的理论和实验工作才能完善对它的理解。 熟悉超导体的读者对“库珀对”这个概念不会陌生,它是以物理学教授利昂·库珀(Leon Cooper)的名字命名的。库珀也因他描述了这些电子对在促进超导效应上所起到的作用而获得了1972年的诺贝尔物理学奖。 当电子在物质的原子晶格中运动时,电阻就产生了。但是当两个电子结合在一起形成一对库珀对时,它们会经历一个明显的转变。电子是一种费米子,也就是说它们是遵循泡利不相容原理的粒子,这意味着每个电子都倾向于维持自己的量子态。而库珀对的行为像是玻色子,它们可以愉快地共享同一状态。这种玻色子行为使得库柏对能够与其他库柏对协调运动,从而将阻力降至为零。 2007年,两名布朗大学的物理学教授一起证明了库珀对除了能产生超导性之外,也可以产生绝缘态。在非常薄的材料中,它们不是一起移动,而是“合谋”一同待在原地,就像是被困在了材料中的岛屿之上,无法跃迁到另一个岛屿之上。 3. 在一项新的研究中,物理学家使用了与当初揭示了库珀对绝缘体相似的技术,探寻了非超导的金属状态下的库珀对的性质。这项技术需要在薄膜超导体上刻印上一排排微孔阵列。在实验中,他们选择的薄膜超导材料是钇钡铜氧(YBCO)。当这种材料被暴露在磁场中,并有电流通过时,材料中的载流子(电荷载体)就会绕着这些微孔环绕,就像水在排水管口盘旋一样。 |
|