分享

AD讲解2

 周氏文案馆 2019-12-12

123

PCB布线与布局

在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。 

124

PCB布线与布局

易受ESD影响的电路,放在PCB中间的区域,减少被触摸的可能性。 

125

PCB布线与布局

信号线的长度大于300mm(12英寸)时,一定要平行布一条地线。 

126

PCB布线与布局

安装孔的连接准则:可以与电路公共地连接,或者与之隔离。1金属支架必须和金属屏蔽装置或者机箱一起使用时,要采用一个电阻实现连接。2.确定安装孔大小来实现金属或者塑料支架的可靠安装,在安装孔顶层和底层上要采用大焊盘,底层焊盘上不能采用阻焊剂,并确保底层焊盘不采用波峰焊工艺焊接。 

127

PCB布线与布局

受保护的信号线和不受保护的信号线禁止并行排列。 

128

PCB布线与布局

复位、中断和控制信号线的布线准则:1采用高频滤波;2远离输入和输出电路;3远离电路板边缘。

129

PCB布线与布局

机箱内的电路板不安装在开口位置或者内部接缝处。 

130

PCB布线与布局

对静电最敏感的电路板放在最中间,人工不易接触到的部位;将对静电敏感的器件放在电路板最中间,人工不易接触到的部位。

131

PCB布线与布局

两块金属块之间的邦定(binding)准则:1固体邦定带优于编织邦定带;2邦定处不潮湿不积水;3使用多个导体将机箱内所有电路板的地平面或地网格连接在一起;4确保邦定点和垫圈的宽度大于5mm

132

电路设计

信号滤波腿耦:对每个模拟放大器电源,必需在最接近电路的连接处到放大器之间加去耦电容器。对数字集成电路,分组加去耦电容器。在马达与发电机的电刷上安装电容器旁路,在每个绕组支路上串联R-C滤波器,在电源入口处加低通滤波等措施抑制干扰。安装滤波器应尽量靠近被滤波的设备,用短的,加屏蔽的引线作耦合媒介。所有滤波器都须加屏蔽,输入引线与输出引线之间应隔离。

133

电路设计

各功能单板对电源的电压波动范围、纹波、噪声、负载调整率等方面的要求予以明确,二次电源经传输到达功能单板时要满足上述要求

134

电路设计

将具有辐射源特征的电路装在金属屏蔽内,使其瞬变干扰最小。

135

电路设计

在电缆入口处增加保护器件

136

电路设计

每个IC的电源管脚要加旁路电容(一般为104)和平滑电容(10uF~100uF)到地,大面积IC每个角的电源管脚也要加旁路电容和平滑电容

137

电路设计

滤波器选型的阻抗失配准则:对低阻抗噪声源,滤波器需为高阻抗(大的串联电感);对高阻抗噪声源,滤波器就需为低阻抗(大的并联电容)

138

电路设计

电容器外壳、辅助引出端子与正、负极以及电路板间必须完全隔离

139

电路设计

滤波连接器必须良好接地,金属壳滤波器采用面接地。

140

电路设计

滤波连接器的所有针都要滤波

141

电路设计

数字电路的电磁兼容设计中要考虑的是数字脉冲的上升沿和下降沿所决定的频带宽而不是数字脉冲的重复频率。方形数字信号的印制板设计带宽定为1πtr,通常要考虑这个带宽的十倍频

142

电路设计

RS触发器作设备控制按钮与设备电子线路之间配合的缓冲

143

电路设计

降低敏感线路的输入阻抗有效减少引入干扰的可能性。

144

电路设计

LC滤波器 在低输出阻抗电源和高阻抗数字电路之间,需要LC滤波器,以保证回路的阻抗匹配

145

电路设计

电压校准电路:在输入输出端,要加上去耦电容(比如0.1μF),旁路电容选值遵循10μF/A的标准。

146

电路设计

信号端接:高频电路源与目的之间的阻抗匹配非常重要,错误的匹配会带来信号反馈和阻尼振荡。过量地射频能量则会导致EMI问题。此时,需要考虑采用信号端接。
信号端接有以下几种:串联/源端接、并联端接、
RC
端接、Thevenin端接、二极管端接。

147

电路设计

MCU电路:
I/O
引脚:空置的I/O引脚要连接高阻抗以便减少供电电流。且避免浮动。
IRQ
引脚:在IRQ引脚要有预防静电释放的措施。比如采用双向二极管、Transorbs或金属氧化变阻器等。
复位引脚:复位引脚要有时间延时。以免上电初期MCU即被复位。
振荡器:在满足要求情况下,MCU使用的时钟振荡频率越低越好。
让时钟电路、校准电路和去耦电路接近MCU放置

148

电路设计

小于10个输出的小规模集成电路,工作频率≤50MHZ时,至少配接一个0.1uf的滤波电容。工作频率≥50MHZ时,每个电源引脚配接一个0.1uf的滤波电容;

149

电路设计

对于中大规模集成电路,每个电源引脚配接一个0.1uf的滤波电容。对电源引脚冗余量较大的电路也可按输出引脚的个数计算配接电容的个数,每5个输出配接一个0.1uf滤波电容。

150

电路设计

对无有源器件的区域,每6cm2至少配接一个0.1uf的滤波电容

151

电路设计

对于超高频电路,每个电源引脚配接一个1000pf的滤波电容。对电源引脚冗余量较大的电路也可按输出引脚的个数计算配接电容的个数,每5个输出配接一个1000pf的滤波电容

152

电路设计

高频电容应尽可能靠近IC电路的电源引脚处。

153

电路设计

5只高频滤波电容至少配接一只一个0.1uf滤波电容;

154

电路设计

510uf至少配接两只47uf低频的滤波电容;

155

电路设计

100cm2范围内,至少配接1220uf470uf低频滤波电容;

156

电路设计

每个模块电源出口周围应至少配置2220uf470uf电容,如空间允许,应适当增加电容的配置数量;

157

电路设计

脉冲与变压器隔离准则:脉冲网络和变压器须隔离,变压器只能与去耦脉冲网络连接,且连接线最短。

158

电路设计

在开关和闭合器的开闭过程中,为防止电弧干扰,可以接入简单的RC网络、电感性网络,并在这些电路中加入一高阻、整流器或负载电阻之类,如果还不行,就将输入和载出引线进行屏蔽。此外,还可以在这些电路中接入穿心电容。

159

电路设计

退耦、滤波电容须按照高频等效电路图来分析其作用。

160

电路设计

各功能单板电源引进处要采用合适的滤波电路,尽可能同时滤除差模噪声和共模噪声,噪声泄放地与工作地特别是信号地要分开,可考虑使用保护地;集成电路的电源输入端要布置去耦电容,以提高抗干扰能力

161

电路设计

明确各单板最高工作频率,对工作频率在160MHz(或200 MHz)以上的器件或部件采取必要的屏蔽措施,以降低其辐射干扰水平和提高抗辐射干扰的能力

162

电路设计

如有可能在控制线(于印刷板上)的入口处加接R-C去耦,以便消除传输中可能出现的干扰因素。

163

电路设计

R-S触发器做按钮与电子线路之间配合的缓冲

164

电路设计

在次级整流回路中使用快恢复二极管或在二极管上并联聚酯薄膜电容器

165

电路设计

对晶体管开关波形进行修整

166

电路设计

降低敏感线路的输入阻抗

167

电路设计

如有可能在敏感电路采用平衡线路作输入,利用平衡线路固有的共模抑制能力克服干扰源对敏感线路的干扰

168

电路设计

将负载直接接地的方式是不合适

169

电路设计

注意在IC近端的电源和地之间加旁路去耦电容(一般为104

170

电路设计

如有可能,敏感电路采用平衡线路作输入,平衡线路不接地

171

电路设计

继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可 动作更多的次数

172

电路设计

在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几到几十K,电容选0.01uF),减小电火花影响

173

电路设计

给电机加滤波电路,注意电容、电感引线要尽量短

174

电路设计

电路板上每个IC要并接一个0.01μF0.1μF高频电容,以减小IC对电源的 影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电 容的等效串联电阻,会影响滤波效果

175

电路设计

可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能 会把可控硅击穿的)

176

电路设计

许多单片机对电源噪声很敏感,要给单片机电源加滤波电路 或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容 组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠

177

电路设计

如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之 间应加隔离(增加π形滤波电路)。 控制电机等噪声器件,在I/O口与噪声源之 间应加隔离(增加π形滤波电路)。

178

电路设计

在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件 如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能

179

电路设计

对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置 端在不改变系统逻辑的情况下接地或接电源

180

电路设计

对单片机使用电源监控及看门狗电路,如:IMP809IMP706IMP813 X25043X25045等,可大幅度提高整个电路的抗干扰性能。

181

电路设计

在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字 电路

182

电路设计

如有可能,在PCB板的接口处加RC低通滤波器或EMI抑制元件(如磁珠、信号滤波器等),以消除连接线的干扰;但是要注意不要影响有用信号的传输

183

电路设计

时钟输出布线时不要采用向多个部件直接串行地连接〔称为菊花式连接〕;而应该经缓存器分别向其它多个部件直接提供时钟信号

184

电路设计

延伸薄膜键盘边界使之超出金属线12mm,或者用塑料切口来增加路径长度。 

185

电路设计

在靠近连接器的地方,要将连接器上的信号用一个L-C或者磁珠-电容滤波器接到连接器的机箱地上。 

186

电路设计

在机箱地和电路公共地之间加入一个磁珠。 

187

电路设计

电子设备内部的电源分配系统是遭受ESD电弧感性耦合的主要对象,电源分配系统防ESD措施:1将电源线和相应的回路线紧密绞合在一起;2在每一根电源线进入电子设备的地方放一个磁珠;3在每一个电源管脚和紧靠电子设备机箱地之间放一个瞬流抑制器、金属氧化压敏电阻(MOV)或者1kV高频电容;4最好在PCB上布置专门的电源和地平面,或者紧密的电源和地栅格,并采用大量旁路和去耦电容。

188

电路设计

在接收端放置串联的电阻和磁珠,对易被ESD击中的电缆驱动器,也可在驱动端放置串联的电阻或磁珠。 

189

电路设计

在接收端放置瞬态保护器。1用短而粗的线(长度小于5倍宽度,最好小于3倍宽度)连接到机箱地。2从连接器出来的信号线和地线要直接接到瞬态保护器,然后才能接电路的其它部分。

190

电路设计

在连接器处或者离接收电路25mm(1.0英寸)的范围内,放置滤波电容。1用短而粗的线连接到机箱地或者接收电路地(长度小于5倍宽度,最好小于3倍宽度)2信号线和地线先连接到电容再连接到接收电路。

191

机壳

金属机箱上,开口最大直径≤λ/20λ为机内外最高频电磁波的波长;非金属机箱在电磁兼容设计上视同为无防护。

192

机壳

屏蔽体的接缝数最少;屏蔽体的接缝处,多接点弹簧压顶接触法具有较好的电连续性;通风孔D<3mm,这个孔径能有效避免较大的电磁泄露或进入;屏蔽开口处(如通风口)用细铜网或其它适当的导电材料封堵;通风孔金属网如须经常取下,可用螺钉或螺栓沿孔口四周固定,但螺钉间距<25mm以保持连续线接触

193

机壳

f>1MHz0.5mm厚的任何金属板屏蔽体,都将场强减弱99%;当f>10MHz0.1mm的铜皮屏蔽体将场强减弱99%以上;f>100MHz,绝缘体表面的镀铜层或镀银层就是良好的屏蔽体。但需注意,对塑料外壳,内部喷覆金属涂层时,国内的喷涂工艺不过关,涂层颗粒间连续导通效果不佳,导通阻抗较大,应重视其喷涂不过关的负面效果。

194

机壳

整机保护地连接处不涂绝缘漆,要保证与保护地电缆可靠的金属接触,避免仅仅依靠螺丝螺纹做接地连接的错误方式

195

机壳

建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地

196

机壳

建立一个击穿电压为20kV的抗ESD环境;利用增加距离来保护的措施都是有效的。

197

机壳

电子设备与下列各项之间的路径长度超过20mm,包括接缝、通风口和安装孔在内任何用户操作者能够接触到的点,可以接触到的未接地金属,如紧固件、开关、操纵杆和指示器。

198

机壳

在机箱内用聚脂薄膜带来覆盖接缝以及安装孔,这样延伸了接缝/过孔的边缘,增加了路径长度。 

199

机壳

用金属帽或者屏蔽塑料防尘盖罩住未使用或者很少使用的连接器。 

200

机壳

使用带塑料轴的开关和操纵杆,或将塑料手柄/套子放在上面来增加路径长度。避免使用带金属固定螺丝的手柄。 

201

机壳

LED和其它指示器装在设备内孔里,并用带子或者盖子将它们盖起来,从而延伸孔的边沿或者使用导管来增加路径长度。 

202

机壳

将散热器靠近机箱接缝,通风口或者安装孔的金属部件上的边和拐角要做成圆弧形状。 

203

机壳

塑料机箱中,靠近电子设备或者不接地的金属紧固件不能突出在机箱中。 

204

机壳

高支撑脚使设备远离桌面或地面可以解决桌面/地面或者水平耦合面的间接ESD耦合问题。

205

机壳

在薄膜键盘电路层周围涂上粘合剂或密封剂。 

206

机壳

机箱结合点和边缘防护准则:结合点和边缘很关键,在机箱箱体接合处,要使用耐高压硅树脂或者垫圈实现密闭、防ESD、防水和防尘。 

207

机壳

不接地机箱至少应该具有20kV的击穿电压(规则A1A9);而对接地机箱,电子设备至少要具备1500V击穿电压以防止二级电弧,并且要求路径长度大于等于2.2mm 

208

机壳

机箱用以下屏蔽材料制作:金属板;聚酯薄膜/铜或者聚酯薄膜/铝压板;具有焊接结点的热成型金属网;热成型金属化的纤维垫子(非编织)或者织物(编织);银、铜或者镍涂层;锌电弧喷涂;真空金属处理;无电电镀;塑料中加入导体填充材料;

209

机壳

屏蔽材料防电化学腐蚀准则:相互接触的部件彼此之间的电势 (EMF)<0.75V。如果在一个盐性潮湿环境中,那么彼此之间的电势必须<0.25V。阳极(正极)部件的尺寸应该大于阴极(负极)部件。

210

机壳

用缝隙宽度5倍以上的屏蔽材料叠合在接缝处。 

211

机壳

在屏蔽层与箱体之间每隔20mm(0.8英寸)的距离通过焊接、紧固件等方式实现电连接。 

212

机壳

用垫圈实现缝隙的桥接,消除开槽并且在缝隙之间提供导电通路。 

213

机壳

避免屏蔽材料中出现直拐角以及过大的弯角。 

214

机壳

孔径≤20mm以及槽的长度≤20mm。相同开口面积条件下,优先采取开孔而不是开槽。 

215

机壳

如果可能,用几个小的开口来代替一个大的开口,开口之间的间距尽量大。

216

机壳

对接地设备,在连接器进入的地方将屏蔽层和机箱地连接在一起;对未接地(双重隔离)设备,将屏蔽材料同开关附近的电路公共地连接起来。 

217

机壳

尽可能让电缆进入点靠近面板中心,而不是靠近边缘或者拐角的位置。 

218

机壳

在屏蔽装置中排列的各个开槽与ESD电流流过的方向平行而不是垂直。  

219

机壳

在安装孔的位置使用带金属支架的金属片来充当附加的接地点,或者用塑料支架来实现绝缘和隔离。

220

机壳

在塑料机箱上的控制面板和键盘位置处安装局部屏蔽装置来阻止ESD 

221

机壳

电源连接器和引向外部的连接器的位置,要连接到机箱地或者电路公共地。

222

机壳

在塑料中使用聚酯薄膜/铜或者聚酯薄膜/铝压板,或者使用导电涂层或导电填充物。

223

机壳

在铝板上使用薄的导电铬化镀层或者铬酸盐涂层 ,但不能采用阳极电镀。

224

机壳

在塑料中要使用导电填充材料。注意铸型部件表面通常有树脂材料,很难实现低电阻的连接。 

225

机壳

在钢材料上使用薄的导电铬酸盐涂层。 

226

机壳

让清洁整齐的金属表面直接接触而不要依靠螺钉来实现金属部件的连接。 

227

机壳

沿整个外围用屏蔽涂层(铟锡氧化物、铟氧化物和锡氧化物等)将显示器与机箱屏蔽装置连接在一起。 

228

机壳

在操作者常接触的位置处,要提供一个到地的抗静电(弱导电)路径,比如键盘上的空格键。 

229

机壳

要让操作员很难产生到金属板边缘或角的电弧放电。电弧放电到这些点会比电弧放电到金属板中心导致更多间接ESD的影响。 

230

其他

显示窗口的屏蔽防护准则:1加装屏蔽防护窗;2对外电路部分与机内的电路连接通过滤波器件相连。

231

其他

按键窗口防护准则:

232

器件选型

电容器尽量选择贴片电容,引线电感小。

233

器件选型

稳定电源的供电旁路电容,选择电解电容

234

器件选型

交流耦合及电荷存储用电容器选择聚四氟乙烯电容器或其它聚脂型(聚丙烯、聚苯乙烯等)电容器。

235

器件选型

高频电路退耦用单片陶瓷电容器

236

器件选型

电容选择的标准是:
尽可能低的ESR电容;
尽可能高的电容的谐振频率值;

237

器件选型

铝电解电容器应当避免在下述情况下使用:
a
、高温(温度超过最高使用温度)
b
、过流(电流超过额定纹波电流),施加纹波电流超过额定值後,会导致电容器体过热,容量下降,寿命缩短。
c
、过压(电压超过额定电压),当电容器上所施加电压高於额定工作电压时,电容器的漏电流将上升,其电氧物性将在短期内劣化直至损坏。
d
、施加反向电压或交流电压,当值流铝电解电容器按反极性接入电路时,电容器会导致电子线路短路,由此产生的电流会引致电容器损坏。若电路中有可能在负引线施加正极电压,请选无极性产品。
e
、使用於反复多次急剧充放电的电路中,当常规电容器被用作快速充电用途。其使用寿命可能会因为容量下降,温度急剧上升等而缩减。

238

器件选型

只有在屏蔽机箱上才有必要使用滤波连接器

239

器件选型

选用滤波器连接器时,除了要选用普通连接器时要考虑的因素外,还应考虑滤波器的截止频率。当连接器中各芯线上传输的信号频率不同时,要以频率最高的信号为基准来确定截止频率

240

器件选型

封装尽可能选择表贴

241

器件选型

电阻选择首选碳膜,其次金属膜,因功率原因需选线绕时,一定要考虑其电感效应

242

器件选型

电容选择应注意铝电解电容、钽电解电容适用于低频终端;陶制电容适合于中频范围(从KHzMHz);陶制和云母电容适合于甚高频和微波电路;尽量选用低ESR(等效串联电阻)电容

243

器件选型

旁路电容选择电解电容,容值选10-470PF,主要取决于PCB板上的瞬态电流需求

244

器件选型

去耦电容应选择陶瓷电容,容值选旁路电容的1/1001/1000。取决于最快信号的上升时间和下降时间。比如100MHz10nF33MHz4.7-100nF,选择ESR值小于1欧姆
选择NPO(锶钛酸盐电介质)用作50MHz以上去耦,选择Z5U(钡钛酸盐)用作低频去耦,最好是选择相差两个数量级的电容并联去耦

245

器件选型

电感选用时,选择闭环优于开环,开环时选择绕轴式优于棒式或螺线管式。选择铁磁芯应用于低频场合,选择铁氧体磁心应用于高频场合

246

器件选型

铁氧体磁珠 高频衰减10dB

247

器件选型

铁氧体夹 MHz频率范围的共模(CM)、差模(DM)衰减达10-20dB

248

器件选型

二极管选用:
肖特基二极管:用于快速瞬态信号和尖脉冲保护;
齐纳二极管:用于ESD(静电放电)保护;过电压保护;低电容高数据率信号保护
瞬态电压抑制二极管(TVS):ESD激发瞬时高压保护,瞬时尖脉冲消减
变阻二极管:ESD保护;高压和高瞬态保护

249

器件选型

集成电路:
选用 CMOS器件尤其是高速器件有动态功率要求,需要采取去耦措施以便满足其瞬时功率要求。
高频环境中,引脚会形成电感,数值约为1nH/1mm,引脚末端也会向后呈小电容效应,大约有4pF。表贴器件有利于EMI性能,寄生电感和电容值分别为0.5nH0.5pF
放射状引脚优于轴向平行引脚;
TTL
CMOS混合电路因为开关保持时间不同,会产生时钟、有用信号和电源的谐波,因此最好选择同系列逻辑电路。
未使用的CMOS器件引脚,要通过串联电阻接地或者接电源。

250

器件选型

滤波器的额定电流值取实际工作电流值的1.5倍。

251

器件选型

电源滤波器的选择:依据理论计算或测试结果,电源滤波器应达到的插损值为IL,实际选型时应选择插损为IL+20dB大小的电源滤波器。

252

器件选型

交流滤波器和支流滤波器在实际产品中不可替换使用,临时性样机中,可以用交流滤波器临时替代直流滤波器使用;但直流滤波器绝对不可用于交流场合,直流滤波器对地电容的滤波截止频率较低,交流电流会在其上产生较大损耗。

253

器件选型

避免使用静电敏感器件,选用器件的静电敏感度一般不低于2000V,否则要仔细推敲、设计抗静电的方法。在结构方面,要实现良好的地气连接及采取必要的绝缘或屏蔽措施,提高整机的抗静电能力

254

器件选型

带屏蔽的双绞线,信号电流在两根内导线上流动,噪声电流在屏蔽层里流动,因此消除了公共阻抗的耦合,而任何干扰将同时感应到两根导线上,使噪声相消

255

器件选型

非屏蔽双绞线抵御静电耦合的能力差些。但对防止磁场感应仍有很好作用。非屏蔽双绞线的屏蔽效果与单位长度的导线扭绞次数成正比

256

器件选型

同轴电缆有较均匀的特性阻抗和较低的损耗,使从直流到甚高频都有较好特性。

257

器件选型

凡是能不用高速逻辑电路的地方就不要用高速逻辑电路

258

器件选型

在选择逻辑器件时,尽量选上升时间比5ns长的器件,不要选比电路要求时序快的逻辑器件

259

系统

多个设备相连为电气系统时,为消除地环路电源引起的干扰,采用隔离变压器、中和变压器、光电耦合器和差动放大器共模输入等措施来隔离。

260

系统

识别干扰器件和干扰电路:在启停或运行状态下,电压变化率dV/dt、电流变化率di/dt较大的器件或电路,为干扰器件或干扰电路。

261

系统

在薄膜键盘电路和与其相对的邻近电路之间放置一个接地的导电层。

262

线缆与接插件

PCB布线与布局隔离准则:强弱电流隔离、大小电压隔离,高低频率隔离、输入输出隔离、数字模拟隔离、输入输出隔离,分界标准为相差一个数量级。隔离方法包括:屏蔽其中一个或全部独立屏蔽、空间远离、地线隔开。

263

线缆与接插件

无屏蔽的带状电缆。最佳接线方式是信号与地线相间,稍次的方法是一根地、两根信号再一根地依次类推,或专用一块接地平板

264

线缆与接插件

信号电缆屏蔽准则:1强干扰信号传输使用双绞线或专用外屏蔽双绞线。2直流电源线应用屏蔽线;3交流电源线应用扭绞线;4所有进入屏蔽区的信号线/电源线均须经过滤波。5一切屏蔽线(套)两端应与地有良好的接触,只要不产生有害接地环路,所有电缆屏蔽套都应两端接地,对非常长的电缆,则中间也应有接地点。6在灵敏的低电平电路中,以消除接地环路中可能产生的干扰,对每电路都应有各自隔离和屏蔽好接地线。

265

线缆与接插件

屏蔽线紧贴金属底板准则:所有带屏蔽层的电缆宜紧贴金属板安放,防止磁场穿过金属地板和屏蔽线外皮构成的回路

266

线缆与接插件

印刷电路的插头也要多安排一些零伏线作为线间隔离

267

线缆与接插件

减小干扰和敏感电路的环路面积最好办法是使用双绞线和屏蔽线

268

线缆与接插件

双绞线在低于100KHz下使用非常有效,高频下因特性阻抗不均匀及由此造成的波形反射而受到限制

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多