分享

guava异步增强

 gideshi 2020-02-04

guava异步增强——ListenableFuture

1字数 669阅读 11,705

guava异步增强——ListenableFuture

jdk原生的future已经提供了异步操作,但是不能直接回调。guava对future进行了增强,核心接口就是ListenableFuture。如果已经开始使用了jdk8,可以直接学习使用原生的CompletableFuture,这是jdk从guava中吸收了精华新增的类(我还不会)。

guava对jdk的异步增强可以通过看MoreExecutorFutures两个类的源码入手,写的并不复杂,没有一层一层的调用,逻辑很清晰,建议读完本文通过这两个类由点到面的理解guava到底做了什么

  • ListenableFuture继承了Future,额外新增了一个方法,listener是任务结束后的回调方法,executor是执行回调方法的执行器(通常是线程池)。guava中对future的增强就是在addListener这个方法上进行了各种各样的封装,所以addListener是核心方法
    void addListener(Runnable listener, Executor executor);
  • jdk原生FutureTask类是对Future接口的实现,guava中ListenableFutureTask继承了FutureTask并实现了ListenableFuture,guava异步回调最简单的使用:
//ListenableFutureTask通过静态create方法返回实例,还有一个重载方法,不太常用
ListenableFutureTask<String> task = ListenableFutureTask.create(new Callable<String>() {
    @Override
    public String call() throws Exception {
        return "";
    }
});
//启动任务
new Thread(task).start();
//增加回调方法,MoreExecutors.directExecutor()返回guava默认的Executor,执行回调方法不会新开线程,所有回调方法都在当前线程做(可能是主线程或者执行ListenableFutureTask的线程,具体可以看最后面的代码)。
//guava异步模块中参数有Executor的方法,一般还会有一个没有Executor参数的重载方法,使用的就是MoreExecutors.directExecutor()
task.addListener(new Runnable() {
    @Override
    public void run() {
        System.out.println("done");
    }
}, MoreExecutors.directExecutor());
//MoreExecutors.directExecutor()源码,execute方法就是直接运行,没有新开线程
public static Executor directExecutor() {
    return DirectExecutor.INSTANCE;
}

private enum DirectExecutor implements Executor {
    INSTANCE;

    @Override
    public void execute(Runnable command) {
        command.run();
    }

    @Override
    public String toString() {
        return "MoreExecutors.directExecutor()";
    }
}
  • 一般使用异步模式的时候,都会用一个线程池来提交任务,不会像上面那样简单的开一个线程去做,那样效率太低下了,所以需要说说guava对jdk原生线程池的封装。guava对原生线程池的增强都在MoreExecutor类中,guava对ExecutorService和ScheduledExecutorService的增强类似,这里只介绍ExecutorService的增强
//真正干活的线程池
ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(
        5,
        5,
        0,
        TimeUnit.SECONDS,
        new ArrayBlockingQueue<>(100),
        new CustomizableThreadFactory("demo"),
        new ThreadPoolExecutor.DiscardPolicy());
//guava的接口ListeningExecutorService继承了jdk原生ExecutorService接口,重写了submit方法,修改返回值类型为ListenableFuture
ListeningExecutorService listeningExecutor = MoreExecutors.listeningDecorator(poolExecutor);

//获得一个随着jvm关闭而关闭的线程池,通过Runtime.getRuntime().addShutdownHook(hook)实现
//修改ThreadFactory为创建守护线程,默认jvm关闭时最多等待120秒关闭线程池,重载方法可以设置时间
ExecutorService newPoolExecutor = MoreExecutors.getExitingExecutorService(poolExecutor);

//只增加关闭线程池的钩子,不改变ThreadFactory
MoreExecutors.addDelayedShutdownHook(poolExecutor, 120, TimeUnit.SECONDS);
  • 有了上面的学习,就可以真正使用guava的异步回调了
//像线程池提交任务,并得到ListenableFuture
ListenableFuture<String> listenableFuture = listeningExecutor.submit(new Callable<String>() {
    @Override
    public String call() throws Exception {
        return "";
    }
});
//可以通过addListener对listenableFuture注册回调,但是通常使用Futures中的工具方法
Futures.addCallback(listenableFuture, new FutureCallback<String>() {
    @Override
    public void onSuccess(String result) {

    }

    @Override
    public void onFailure(Throwable t) {

    }
});

/**
 * Futures.addCallback源码,其实就是包装了一层addListener,可以不加executor参数,使用上文说的DirectExecutor
 * 需要说明的是不加Executor的情况,只适用于轻型的回调方法,如果回调方法很耗时占资源,会造成线程阻塞
 * 因为DirectExecutor有可能在主线程中执行回调
 */
public static <V> void addCallback(final ListenableFuture<V> future, final FutureCallback<? super V> callback, Executor executor) {
    Preconditions.checkNotNull(callback);
    Runnable callbackListener =
            new Runnable() {
                @Override
                public void run() {
                    final V value;
                    try {
                        value = getDone(future);
                    } catch (ExecutionException e) {
                        callback.onFailure(e.getCause());
                        return;
                    } catch (RuntimeException e) {
                        callback.onFailure(e);
                        return;
                    } catch (Error e) {
                        callback.onFailure(e);
                        return;
                    }
                    callback.onSuccess(value);
                }
            };
    future.addListener(callbackListener, executor);
}
  • guava还提供了多个异步任务的链式执行方法,如果使用addListener实现大概是这样,会一层一层不断地套下去
ListenableFutureTask<String> task1 = ListenableFutureTask.create(new Callable<String>() {
    @Override
    public String call() throws Exception {
        return "";
    }
});
new Thread(task1).start();
task1.addListener(new Runnable() {
    @Override
    public void run() {
        ListenableFutureTask<String> task2 = ListenableFutureTask.create(new Callable<String>() {
            @Override
            public String call() throws Exception {
                return "";
            }
        });
        task2.addListener(new Runnable() {
            @Override
            public void run() {
                ...
            }
        }, MoreExecutors.directExecutor());
        new Thread(task2).start();
    }
}, MoreExecutors.directExecutor());
  • 使用guava的异步链式执行
//当task1执行完毕会回调执行Function的apply方法,如果有task1有异常抛出,则task2也抛出相同异常,不执行apply
ListenableFuture<String> task2 = Futures.transform(task1, new Function<String, String>() {
    @Override
    public String apply(String input) {
        return "";
    }
});
ListenableFuture<String> task3 = Futures.transform(task2, new Function<String, String>() {
    @Override
    public String apply(String input) {
        return "";
    }
});
//处理最终的异步任务
Futures.addCallback(task3, new FutureCallback<String>() {
    @Override
    public void onSuccess(String result) {
        
    }

    @Override
    public void onFailure(Throwable t) {

    }
});

Futures.transform()和Futures.addCallback()都是对addListener做了封装,进行回调的设置,但是transform更适合用在链式处理的中间过程,addCallback更适合用在处理最终的结果上

  • Futures.transform()和Futures.transformAsync()的区别在于一个参数为Function,一个是AsyncFuntion,AsyncFuntion的apply方法返回值类型也是ListenableFuture,也就是回调方法也是异步的

transform和transformAsync不传入executor的方法已经被废弃准备删去了,不传入Executor时是哪个线程注意到任务结束了就在哪个线程执行回调方法,既可能是主线程,也可能是执行前一个任务的线程,这样会造成混乱。可以看下面代码

ListenableFutureTask<String> task1 = ListenableFutureTask.create(new Callable<String>() {
    @Override
    public String call() throws Exception {
        TimeUnit.SECONDS.sleep(5);
        System.out.println("task1 over" + new Date());
        return "";
    }
});
new Thread(task1).start();
//放开注释的话,上面的线程已经结束,所以是主线程执行回调方法,因此主线程会阻塞5s
//TimeUnit.SECONDS.sleep(6);
ListenableFuture<String> transform = Futures.transform(task1, new Function<String, String>() {
    @Override
    public String apply(String input) {
        try {
            TimeUnit.SECONDS.sleep(5);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("trans over" + new Date());
        //显示的是执行task1的线程
        System.out.println("trans over" + Thread.currentThread());
        return "";
    }
});
while (true) {
    TimeUnit.MILLISECONDS.sleep(200);
    System.out.println(new Date().toString() + Thread.currentThread());
}

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多