折腾了两天才算是有点成果了。整理一下吧。
用C# WinForm开发,使用AForge调用摄像头,加上Dlib(DotNet)实现一下人脸识别
目录
1 AForge.Net调用摄像头
1.1 安装AForge.Net的依赖包
1.2 设计WinForm界面
1.3 添加代码
1.4 补充说明
1.4.1 关于VideoSourcePlayer 控件
1.4.2 关于拍照
2 添加人脸识别方法
2.1 安装DlibDotNet和人脸数据
2.2 人脸识别方法
2.3 人脸识别应用
3 遇到的坑
3.1 找不到【DlibDotNetNative.dll】和【DlibDotNetNativeDnn.dll】
3.2 图片转换:Bitmap->Array2D
3.3 图像转换抛异常
1 AForge.Net调用摄像头
1.1 安装AForge.Net的依赖包
操作摄像头需要用到【AForge.Video.DirectShow】。
从NuGet里查找进行安装,安装时会同时安装它的依赖项:【AForge.Video】和【AForge】
1.2 设计WinForm界面
界面如下:

图中蓝色字体标注了我对每个控件的定义的ID,方便对应下文的代码
左边的【VideoSourcePlayer】控件(AForge中的控件)是摄像头的画面显示,右边的【PictureBox】是后面做人脸识别的显示框。
下方的【PictureBox】是拍照预览框。
期望是程序运行时,检测摄像头设备,添加到【coBox_camList】中,用户选择要用的相机设备,该设备所支持的分辨率自动添加到【coBox_Reslution】列表中,并自动选中默认分辨率,点击【打开】按钮即可显示摄像头画面并实时进行人脸检测。
1.3 添加代码
上面界面对应的代码(Form1.cs)如下:
using System.Windows.Forms; using AForge.Video; //引用命名空间 using AForge.Video.DirectShow; //引用命名空间 public partial class AForgeCamera : Form private FilterInfoCollection CaptureDevices; //设备列表 private VideoCaptureDevice captureDevice; //摄像头设备 private VideoCapabilities[] videoCapabilities; //摄像头能力列表 private VideoCapabilities videoCapabilitie; //单一摄像头能力(分辨率等) btn_takePic.Enabled = false; pBox_view.SizeMode = PictureBoxSizeMode.StretchImage; pBox_faceDst.SizeMode = PictureBoxSizeMode.StretchImage; CaptureDevices = new FilterInfoCollection(FilterCategory.VideoInputDevice); foreach (FilterInfo filterInfo in CaptureDevices) coBox_CamList.Items.Add(filterInfo.Name); faceDetection = new FaceDetection(); private void AForgeCamera_FormClosing(object sender, FormClosingEventArgs e) AVPlayer_Cam1.VideoSource = null; private void coBox_CamList_SelectedIndexChanged(object sender, EventArgs e) coBox_Resolution.Items.Clear(); //先清理上次选择的摄像头支持的分辨率 FilterInfo filterInfo = CaptureDevices[coBox_CamList.SelectedIndex]; captureDevice = new VideoCaptureDevice(filterInfo.MonikerString); videoCapabilities = captureDevice.VideoCapabilities; foreach (VideoCapabilities capabilitie in videoCapabilities) coBox_Resolution.Items.Add(capabilitie.FrameSize.Width.ToString() + "×" + capabilitie.FrameSize.Height.ToString()); //选中默认分辨率 触发coBox_Resolution_SelectedIndexChanged() if (coBox_Resolution.Items.Count > 0) coBox_Resolution.SelectedIndex = 0; private void coBox_Resolution_SelectedIndexChanged(object sender, EventArgs e) //获取选择的分辨率,选择时没有关闭摄像头时进行关闭 videoCapabilitie = videoCapabilities[coBox_Resolution.SelectedIndex]; btn_takePic.Enabled = true; if (AVPlayer_Cam1.IsRunning) AVPlayer_Cam1.VideoSource = null; AVPlayer_Cam1.VideoSource = null; private void btn_cam_Click(object sender, EventArgs e) if (btn_cam.Text == "打开") captureDevice.VideoResolution = videoCapabilitie; AVPlayer_Cam1.VideoSource = captureDevice; captureDevice.SimulateTrigger(); btn_takePic.Enabled = true; AVPlayer_Cam1.VideoSource = null; btn_takePic.Enabled = false; private void btn_takePic_Click(object sender, EventArgs e) pBox_view.Image = AVPlayer_Cam1.GetCurrentVideoFrame();
运行效果如下:

(啊。。。。。保存gif好费劲,感谢ScreenToGif,是个好软件)
1.4 补充说明
1.4.1 关于VideoSourcePlayer 控件
它的实例化对象就是界面上的图像预览框,在使用时,把摄像头设备赋值给它的【videoSource】属性。可以理解为该控件其实是【VideoCaptureDevice】的一个复制品,或者说是一个客户端。我们在打开摄像头和关闭摄像头时,使用了如下方式:
AVPlayer_Cam1.VideoSource = captureDevice;
实际上,在指定了视频源后,可以直接操作视频源也是可以的,如下代码也是能实现打开和关闭摄像头。
AVPlayer_Cam1.VideoSource = captureDevice;
1.4.2 关于拍照
本文拍照这里采用的是:
pBox_view.Image = AVPlayer_Cam1.GetCurrentVideoFrame();
即使用【VideoSourcePlayer】控件来实现,但是我一直想直接通过【VideoCaptureDevice】对象直接拍照,发现实现不了。
【VideoCaptureDevice】类下面有几个关于拍照和视频帧的东西:
------AForge.Video.DirectShow源码----- public bool ProvideSnapshots { get; set; } public event NewFrameEventHandler SnapshotFrame; public event NewFrameEventHandler NewFrame; public void SimulateTrigger();
从文档来看,先设置【ProvideSnapshots 】为“true”,接着把【SnapshotFrame】绑定到对图片处理方法(例如预览、保存),接着调用【SimulateTrigger()】来模拟外触发拍照,这样的拍照方法实现应该是最理想的,but我试了不成功,搜索发现好像是硬件不支持。要不然就是我的操作不对,如果有谁测试成功了,还请分享一下。
另一个是 NewFrame 事件,即摄像头获取到新的帧后触发的事件,也就是说可以不用【VideoSourcePlayer】来显示画面,可以用下面的方式通过【PictureBox】来实现。
captureDevice.NewFrame += new NewFrameEventHandler(NewFrameEvent); private void NewFrameEvent(object sender, NewFrameEventArgs eventArgs) this.Invoke(new NewFrameEventHandler(FaceDetection), new object[] { sender, eventArgs }); //pBox_video是用于代替上文AVPlayer_Cam1的PictureBox控件 pBox_video.Image= (Bitmap)eventArgs.Frame.Clone();
看到这个,应该都能猜到了,我们可以利用这个方法获取所拍摄的图像进行人脸识别、视频录制、图像处理等操作。
2 添加人脸识别方法
人脸识别使用了Dlib库,这是一个C++开发的目标检测的库,大多是都是用Python进行调用开发,但是这里要在.Net平台第哦啊用,找了一下,发现是.Net平台对应的库:DlibDotNet。
2.1 安装DlibDotNet和人脸数据
一样,NuGet上查找进行安装,搜索安装【DlibDotNet】就好。
接着就是去官网下载人脸数据,即匹配人脸所需要的一个 “.dat”文件。
下载地址:http://www./files/
要下载的文件是:【shape_predictor_5_face_landmarks.dat】或【shape_predictor_68_face_landmarks.dat】
分别是识别出人脸中的5个特征点和68个特征点,当然识别的越多越难也就越慢。
按需要下载后,放到合适的目录下,比如我放在项目exe目录下的“face_data”文件夹下。
2.2 人脸识别方法
添加一个【FaceDetection.cs】文件,添加代码如下:
using DlibDotNet.Extensions; public class FaceDetection private string faceDataPath; public string FaceDataPath { get => faceDataPath; set => faceDataPath = value; } faceDataPath = @"face_data\shape_predictor_68_face_landmarks.dat"; /// <param name="image">图像</param> /// <param name="numOfFaceDetected"> 识别到的人脸数目</param> public Bitmap FaceDetectionFromImage(Bitmap image, out int numOfFaceDetected) Array2D<RgbPixel> img = BitmapExtensions.ToArray2D<RgbPixel>(image); using (var faceDetector = Dlib.GetFrontalFaceDetector()) using (var shapePredictor = ShapePredictor.Deserialize(faceDataPath)) var faces = faceDetector.Operator(img); foreach (var rect in faces) Dlib.DrawRectangle(img, rect, new RgbPixel { Blue = 255 }, 3); var shape = shapePredictor.Detect(img, rect); for (uint i = 1;i < shape.Parts; i++) Dlib.DrawLine(img, shape.GetPart(i), shape.GetPart(i - 1), new RgbPixel { Red = 255 }); numOfFaceDetected = faces.Length; return BitmapExtensions.ToBitmap<RgbPixel>(img);
上面的代码中【FaceDetectionFromImage】就是从 Bitmap图像中识别人脸的并将区域于特征绘制到图像上并返回图像的函数。
结合1.4.2中说明的【event NewFrame】,就可以实现了。
2.3 人脸识别应用
在调用摄像头的代码中,添加调用人脸识别的方法。
首先,在其中(调用摄像头的界面源码 Form1.cs)中,新增人脸识别的调用方法,该方法就是AForge摄像头设备【captureDevice.NewFrame】事件要绑定的方法。
private void FaceDetection(object sender, NewFrameEventArgs eventArgs) this.Invoke(new NewFrameEventHandler(FaceDetection), new object[] { sender, eventArgs }); Bitmap img = (Bitmap)eventArgs.Frame.Clone(); //进行人脸识别以及图像显示,更新界面的人脸识别数目 pBox_faceDst.Image = faceDetection.FaceDetectionFromImage(img, out numFaces); lb_FaceNum.Text = numFaces.ToString();
接着,在打开摄像头的地方,添加事件绑定的代码(既然有绑定,就有解绑):
private void btn_cam_Click(object sender, EventArgs e) if (btn_cam.Text == "打开") captureDevice.VideoResolution = videoCapabilitie; AVPlayer_Cam1.VideoSource = captureDevice; //重点是这一句代码!!-------------------------↓ captureDevice.NewFrame += new NewFrameEventHandler(FaceDetection); captureDevice.SimulateTrigger(); btn_takePic.Enabled = true; } //还有这一句代码!!-------------------------↓ captureDevice.NewFrame -= new NewFrameEventHandler(FaceDetection); AVPlayer_Cam1.VideoSource = null; btn_takePic.Enabled = false;
其次还有就是在切换分辨率时,会关闭摄像头数据,也得解绑事件,还有就是程序关闭的时候要解绑!这些就不贴代码了。
最终效果如下:

3 遇到的坑
3.1 找不到【DlibDotNetNative.dll】和【DlibDotNetNativeDnn.dll】
从NuGet中安装了DlibDotNet,写完代码编译时,可能会在VS的错误列表中看到 “无法复制xxxx\DlibDotNetNative.dll,找不到该文件”等错误,因为现在新版VS新建的C#项目都是对应“AnyCPU”的,而下载的包中,这两个dll在“x64/x86”目录下,所以找不到,一种方法:在错误信息说明的路径下,新建“AnyCPU”等路径,然后从x86目录下找到这两个dll,复制进去;要不然就是把项目的【解决方案平台】切换成x64。
编译通过后运行可能还会报错,把这两个dll复制到编译成成的exe目录下就好。
3.2 图片转换:Bitmap->Array2D<RgbPixel>
Array2D<RgbPixel> img = BitmapExtensions.ToArray2D<RgbPixel>(image);
开始的时候这个没法用,看了DlibDotNet源码发现,这个转换的功能在【DlibDotNet.Extensions】里面,但是找不到【DlibDotNet.Extensions.dll】这个库,NuGet里面也没有,于是,,,gitHub下载源码(https://github.com/takuya-takeuchi/DlibDotNet),手动编译项目中的【DlibDotNet.Extensions】,得到这个dll,然后复制到项目进行添加引用就解决了。
3.3 图像转换抛异常
解决了上面的问题,又特喵有新的问题了,图像转换抛异常,显示不支持这个格式(C# Bitmap的图像格式:PixelFormat.Format24bppRgb)的转换,还是这一句对应的内部代码问题。
Array2D<RgbPixel> img = BitmapExtensions.ToArray2D<RgbPixel>(image);
但是看官方的示例源码,也是随便打开一个Bitmap然后这么操作的啊,折腾了好久,发现他们这个版本新的更新中新增了<BgrPixel>图像类型,然后再格式转换的映射字典中,给C# 中的Format24bppRgb对应了两个Dlib内部的格式RgbPixel和BgrPixel,但是又暂时不支持BgrPixel的图像的转换,后续的BgrPixel类型图像的绘图等也还都没有添加。
图像在转换时要先查询格式映射表,但是映射字典中 第二次的BgrPixel覆盖了第一次的RgbPixel ,所以就会抛异常。
怎么搞:修改源码重新编译!
在源码的【DlibDotNet-master\src\DlibDotNet.Extensions\Extensions\BitmapExtensions.cs】文件中,把BgrPixel相关的字典映射删掉,如下方代码中注释掉的部分
OptimumConvertImageInfos[PixelFormat.Format8bppIndexed] = new[] new ConvertInfo<ImageTypes> { Type = ImageTypes.UInt8 } OptimumConvertImageInfos[PixelFormat.Format24bppRgb] = new[] //这里把Format24bppRgb 和 RgbPixel 对应了起来 new ConvertInfo<ImageTypes>{ Type = ImageTypes.RgbPixel, RgbReverse = true } //OptimumConvertImageInfos[PixelFormat.Format24bppRgb] = new[] // //这里又把Format24bppRgb 和 BgrPixel对应了起来 // new ConvertInfo<ImageTypes>{ Type = ImageTypes.BgrPixel, RgbReverse = false } OptimumConvertImageInfos[PixelFormat.Format32bppArgb] = new[] new ConvertInfo<ImageTypes> { Type = ImageTypes.RgbAlphaPixel, RgbReverse = true }
删掉之后,重新编译,编译生成的DlibDotNet.dll替换掉NuGet中下载的,就解决了。
当然,如果这确实是个bug,后面的版本应该会修改掉,我下载时 是 19.18.0.20190928版本,其他人用的时候如果没碰到这些错误就不用这么折腾了。
|