题目描述:
判断一个 9x9 的数独是否有效。只需要根据以下规则,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。

上图是一个部分填充的有效的数独。
数独部分空格内已填入了数字,空白格用 '.' 表示。
示例 1:
输入: [ ["5","3",".",".","7",".",".",".","."], ["6",".",".","1","9","5",".",".","."], [".","9","8",".",".",".",".","6","."], ["8",".",".",".","6",".",".",".","3"], ["4",".",".","8",".","3",".",".","1"], ["7",".",".",".","2",".",".",".","6"], [".","6",".",".",".",".","2","8","."], [".",".",".","4","1","9",".",".","5"], [".",".",".",".","8",".",".","7","9"] ] 输出: true
示例 2:
输入: [ ["8","3",".",".","7",".",".",".","."], ["6",".",".","1","9","5",".",".","."], [".","9","8",".",".",".",".","6","."], ["8",".",".",".","6",".",".",".","3"], ["4",".",".","8",".","3",".",".","1"], ["7",".",".",".","2",".",".",".","6"], [".","6",".",".",".",".","2","8","."], [".",".",".","4","1","9",".",".","5"], [".",".",".",".","8",".",".","7","9"] ] 输出: false 解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
说明:
一个有效的数独(部分已被填充)不一定是可解的。 只需要根据以上规则,验证已经填入的数字是否有效即可。 给定数独序列只包含数字 1-9 和字符 '.' 。 给定数独永远是 9x9 形式的。
思想:
由于board中的整数限定在1到9的范围内,因此可以分别建立哈希表来存储任一个数在相应维度上是否出现过。维度有3个:所在的行,所在的列,所在的box,注意box的下标也是从左往右、从上往下的。
遍历到每个数的时候,例如boar[i][j],我们判断其是否满足三个条件:
在第 i 个行中是否出现过 在第 j 个列中是否出现过 在第 j/3 (i/3)*3个box中是否出现过.为什么是j/3 (i/3)*3呢? 关于从数组下标到box序号的变换 重述一遍问题:给定i和j,如何判定board[i][j]在第几个box呢? 显然属于第几个box由i和j的组合唯一确定,例如board[2][2]一定是第0个box,board[4][7]一定是第5个box,可以画出来看一下,但是规律在哪里呢? 我们可以考虑一种简单的情况: 一个3x9的矩阵,被分成3个3x3的box,如图:
 显然每个数属于哪个box就只取决于纵坐标,纵坐标为0/1/2的都属于box[0],纵坐标为3/4/5的都属于box[1],纵坐标为6/7/8的都属于box[2].也就是j/3. 而对于9x9的矩阵,我们光根据j/3得到0/1/2还是不够的,可能加上一个3的倍数,例如加0x3,表示本行的box,加1x3,表示在下一行的box,加2x3,表示在下两行的box, 这里的0/1/2怎么来的?和j/3差不多同理,也就是i/3。
代码:
class Solution {
public:
bool isValidSudoku(vector<vector<char>>& board) {
int row[9][10] = {0};// 哈希表存储每一行的每个数是否出现过,默认初始情况下,每一行每一个数都没有出现过
// 整个board有9行,第二维的维数10是为了让下标有9,和数独中的数字9对应。
int col[9][10] = {0};// 存储每一列的每个数是否出现过,默认初始情况下,每一列的每一个数都没有出现过
int box[9][10] = {0};// 存储每一个box的每个数是否出现过,默认初始情况下,在每个box中,每个数都没有出现过。整个board有9个box。
for(int i=0; i<9; i ){
for(int j = 0; j<9; j ){
// 遍历到第i行第j列的那个数,我们要判断这个数在其所在的行有没有出现过,
// 同时判断这个数在其所在的列有没有出现过
// 同时判断这个数在其所在的box中有没有出现过
if(board[i][j] == '.') continue;
int curNumber = board[i][j]-'0';
if(row[i][curNumber]) return false;
if(col[j][curNumber]) return false;
if(box[j/3 (i/3)*3][curNumber]) return false;
row[i][curNumber] = 1;// 之前都没出现过,现在出现了,就给它置为1,下次再遇见就能够直接返回false了。
col[j][curNumber] = 1;
box[j/3 (i/3)*3][curNumber] = 1;
}
}
return true;
}
};
来源:https://www./content-4-656901.html
|