作者:Jay Alammar 翻译&润色:极客猴 如果读者们计划学习数据分析、机器学习、或者用 Python 做数据科学的研究,你会经常接触到 Pandas 库。Pandas 是一个开源、能用于数据操作和分析的 Python 库。 1. 加载数据 加载数据最方便、最简单的办法是我们能一次性把表格(CSV 文件或者 EXCEL 文件)导入。然后我们能用多种方式对它们进行切片和裁剪。 Pandas 可以说是我们加载数据的完美选择。Pandas 不仅允许我们加载电子表格,而且支持对加载内容进行预处理。 Pandas 有个核心类型叫 DataFrame。DataFrame 是表格型的数据结构。因此,我们可以将其当做表格。DataFrame 是以表格类似展示,而且还包含行标签、列标签。另外,每列可以是不同的值类型(数值、字符串、布尔型等)。 我们可以使用 read_csv() 来加载 CSV 文件。
其中变量 DF 是 Pandas 的 DataFrame 类型。 Pandas 同样支持操作 Excel 文件,使用 read_excel() 接口能从 EXCEL 文件中读取数据。 2. 选择数据 我们能使用列标签来选择列数据。比如,我们想获取 Artist 所在的整列数据, 可以将 artists 当做下标来获取。 同样,我们可以使用行标签来获取一列或者多列数据。表格中的下标是数字,比如我们想获取第 1、2 行数据,可以使用 df[1:3] 来拿到数据。 Pandas 的利器之一是索引和数据选择器。我们可以随意搭配列标签和行标签来进行切片,从而得到我们所需要的数据。比如,我们想得到第 1, 2, 3 行的 Artist 列数据。 import pandas as pd 3. 过滤数据 过滤数据是最有趣的操作。我们可以通过使用特定行的值轻松筛选出行。比如我们想获取音乐类型(Genre)为值为 Jazz 行。 再比如获取超过 180万听众的 艺术家。 4. 处理空值 数据集来源渠道不同,可能会出现空值的情况。我们需要数据集进行预处理时。 如果想看下数据集有哪些值是空值,可以使用 isnull() 函数来判断。
假设我们之前的音乐数据集中 有空值(NaN)的行。 我们对之前的音乐.csv 文件进行判断,得到结果如下: 如果我想知道哪列存在空值,可以使用 df.isnull().any() import pandas as pd 结果如下: 处理空值,Pandas 库提供很多方式。最简单的办法就是删除空值的行。 除此之外,还可以使用取其他数值的平均值,使用出现频率高的值进行填充缺失值。
5. 分组 ![]() ![]()
|
|