近年来,深度学习领域关于图神经网络(Graph Neural Networks,GNN)的研究热情日益高涨,图网络已经成为各大深度学习顶会的研究热点。GNN 处理非结构化数据时的出色能力使其在网络数据分析、推荐系统、物理建模、自然语言处理和图上的组合优化问题方面都取得了新的突破。但是,大部分的图网络框架的建立都是基于研究者的先验或启发性知识,缺少清晰的理论支撑。 Jure LeskovecJure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。在谷歌学术搜索(Google Scholar)上,Jure拥有接近4.5万的论文引用数量,H指数为84。- The Graph Neural Network Model
- Inductive Representation Learning on Large Graphs
- Hierarchical Graph Representation Learning with Differentiable Pooling
- How powerful are Graph Neural Networks?
- PGNN: Position-Aware Graph Neural Networks
- Strategies for Pre-training Graph Neural Networks
https://static./misc/pdf/graphsage2-mit-nov19.pdf
|