配色: 字号:
压力管道基本知识
2020-05-12 | 阅:  转:  |  分享 
  
目录



1??????装置设备布置设计的一般要求是什么?...1

2??????装置中主管廊宽度、跨度和高度的确定应考虑哪些因素?...1

3??????塔的布置方式有哪几种?塔与其关联的设备的布置有什么要求?...2

4??????沿管廊布置的塔和立式管器与管廊的间距如何确定?...2

5??????塔与塔之间或塔与其他相邻设备之间的距离如何确定?...2

6??????塔和立式容器的安装高度应符合哪些要求?...2

7??????换热设备的布置一般要求是什么?...2

8??????重沸器的布置一般要求是什么?...3

9??????空冷器的布置一般要求是什么?...3

10?????空冷器的布置如何避免自身的或相互间的热风循环?...3

11?????加热炉的布置一般要求是什么?...4

12?????立式容器布置的方式有哪些要求?...4

13?????卧式容器的布置和安装高度有哪些要求?...4

14?????泵的布置方式有哪几种?其布置有何具体要求?...5

15?????压缩机的布置一般要求是什么?...5

16?????压缩机的安装高度应符合什么要求?...6

17?????吊车的选用应符合什么要求?...6

18?????承重钢构架、支架、裙座、管架,覆盖耐火层有哪些要求?...6

19?????装置的控制室、变配电室、化验室的布置应符合哪些防火规定?...6

20?????一般的多层辅助厂房跨度、柱距、进深、层高和开间为多少?...7

21?????在什么情况下需设围堰?围堰设计应符合什么要求?...7

22?????生产装置的通道设置应符合哪些要求?装置内通道的最小宽度和最小净高是多少?...7

23?????设备的构架或平台的安全疏散通道,应符合哪些防火规定?...8

24?????装置布置和发展趋势归结为“四个化”是指什么?...8

25?????管道布置设计的要求有哪些?...8

26?????可燃液体、可燃气体、液化烃的管道设计的原则是什么?...10

27?????哪些介质管道须静电接地?管网的接地连接点和接地电阻值有何要求?...10

28?????管道敷设的方式有哪几类?其优、缺点是什么?...10

29?????符合哪些条件的管道.允许将管道直接埋地布置?...11

30?????埋地敷设管道的埋设深度有哪些要求?...11

31?????管廊上管道布置的原则是什么?...11

32?????治塔管道布置设计时应如何考虑?...11

33?????塔顶管道设计的要点是什么?...11

34?????塔体侧面管道设计有何具体要求?...12

35?????塔底管道设计有何特点?...12

36?????塔上人孔的布置应符合哪些要求?...12

37?????塔的管口方位有何要求?...12

38?????设备管口方位图除表示管口外,还表示什么方位?...13

39?????如何确定卧式容器支座的固定侧?...13

40?????卧式容器的管口方位有什么要求?...13

41?????卧式容器的管道布置的一般要求是什么?...13

42?????加热炉管道布置设计的一般要求是什么?...13

43?????对加热炉的燃料气管道布置的一般要求是什么?...14

44?????管壳式和套管式换热设备的管道布置应如何考虑?...14

45?????成组布置的换热设备其管道布置应如何设计?...14

46?????立式重沸器的管道布置有何要求?...15

47?????管壳式卧式卧式重沸器的管道布置有何要求?...15

48?????空冷器的管道设计有何具体要求?...15

49?????泵类的管道设计一般要求是什么?...15

50?????泵的保护线有哪几种?其作用是什么?...16

51?????离心式压缩机管道布置的一般要求是什么?...16

52?????往复式压缩机管道布置设计的一般要点是什么?...16

53?????压缩机的管道氮气吹扫和置换的目的是什么?...16

54?????低温管道的设计包括哪些范围?...16

55?????低温管道布置要求有哪些?...17

56?????管道取样管的布置原则是什么?...17

57?????装置内火炬总管布置有何特殊要求?...17

58?????装置内火炬的设置应满足哪些要求?...18

59?????管道排气、排液的目的是什么?在管道何处需设置排气或排液?...18

60?????对管道上排气、排液管的安装有何具体要求?...18

61?????向大气排放的非可燃气体放空管高度应符合哪些要求?...19

62?????可燃气体排气筒、放空管的高度,应符合哪些规定:...19

63?????安全泄压装置的出口介质允许向大气排放时,应符合哪些要求?...20

64?????机泵的地漏及排污沟的设置是如何考虑的?...20

65?????工艺装置内甲、乙类设备高于15m的构架平台,消防给水竖管的设置应符合哪些规定?...20

66?????阀门的主要功能是什么?其选用原则是什么?...20

67?????阀门安装的一般要求是什么?...20

68?????呼吸阀的安装有哪些要求?...21

69?????调节阀组安装的一般要来是什么?...21

70?????什么叫安全阀设定压力、最大标定爆破压力和最大泄放压力?何谓独立的压力系统?...22

71?????哪些设备应设安全阀?哪些设备不宜设安全阀?...22

72?????为保证压力管道的安全,哪些压力管道上应设安全阀?...22

73?????安全阀的安装及其管道布置设计的要点是什么?...23

74?????管件的布置一般要求是什么?...23

75?????阻火器的设置和选用有什么要求?...23

76?????阻火器的布置有什么要求?...24

77?????过滤器的布置有什么要求?...24

78?????过滤设备管道布置设计的一般要求是什么?...24

79?????补偿器的布置对管道有什么要求?...25

80?????管道上的仪表或测量元件的布置一般要求是什么?...25

81?????流量测量仪表的布置有什么要求?...25

82?????压力测量仪表的布置有什么要求?...25

83?????温度测量仪表的布置有什么要求?...25

84?????液位测量仪表的布置有什么要求?...26

85?????塔上液面计和液面调节器的管口方位设计有何要求?...26

86?????安全防护设置的一般要求是什么?...26

87?????在管道设计中如何设置安全防护和措施?...26

88?????管道穿过建筑物的楼板、房顶或墙时,应采取哪些措施?...27

89?????配管专业向管道应力专业提出的应力分析条件应包括哪些内容?...27

90?????装置中的工艺管道常用的伴热介质有哪几种?其适用范围如何?...27

91?????管道布置的一般要求有哪些?...28

92?????对于两个成型的管道附件相连接时,宜装设一段直管段;直管段的长度有何要求?...29

93?????异径管的布置有何要求?...29

94?????阀门的布置有何要求?...29

95?????阀门手轮的布置有何要求?...29

96?????存在汽液两相流动的管道布置时应注意哪些问题?...29

97?????管道类别的选择原则是什么?...29

98?????选择法兰的主要原则是什么?...30

99?????什么情况下可以采用螺纹连接方式?...30

100???哪些管道应考虑保温或保冷?...30



压力管道类别与级别

?

?一、ANSI/ASMEB31.3对输送流体的分类

美国国家标准ASME压力管道规范ANSI/ASMEB31.3(以下简称B31.3)根据被输送流体的性质和泄漏时造成的后果,将化工厂和炼油厂管道输送的流体分为D类、M类和性质介于二者之间的第三类流体。

D类流体不易燃、无毒,并且在操作条件下对人类肌体无害;设计压力不超过150lbf/in2(1.05MPa);设设计温度在-20oF(-29℃)至366oF(186℃)之间。M类流体有剧毒,在输送过程中如有少量泄漏到环境中,被人吸入或接触人体时能造成严重的和难以治疗的伤害,即使迅速采取措施也无法挽救。流体类别确定后即可按ANSI/ASMEB31.3的有关章节具体要求对该流体的管道进行设计、施工和检验。

二、中石化对压力管道的类别划分

1中国石化关于《压力管道设计资格类别级别认可和安装单资格实施细则》,对压力管道的类别划分如下表所示。

?

压力管道的类别

管道类别 输送介质特征和设计条件 GA

(长输管道) GA1 1、有毒、可燃、易爆气体,设计压力p>1.6MPa 2、有毒、可燃、易爆气体①,输送距离≥200km且DN≥300mm 3、浆体,输送距离≥50km且DN≥150mm GA2 1、有毒、可燃、易爆气体,设计压力p≤1.6MPa 2、GA1(2)范围以外的 3、GA1(3)范围以外的 GB

(公用管道) GB1 燃气 GB2 热力 GC

(工业管道) GC1 1、毒性程度为极度危害介质② 2、甲、乙类可燃气体或甲类液体③,且设计压力p≥4.0MPa 3、可燃流体、有毒流体设计压力p≥4.0MPa且设计温度T≥400℃ 4、流体且设计压力p≥10.0MPa GC2 1、甲、乙类可燃气体或甲类液体,且设计压力p<4.0MPa 2、可燃流体、有毒流体p<4.0MPa、T≥400℃ 3、非可燃流体、有毒流体p<10.0MPa且T≥400℃ 4、流体,p<10.0MPa且T<400℃ 注:①输送距离指产地、储存库、用户间的用于输送商品介质管道的直接距离。

②GB5044《职业性接触毒物危害程度分级》规定的。

③GB50160《石油化工企业设计防火规范》规定的。

?

???2SH3059对管道的分级如下表。

?

?

SH3059——2001《石油化工管道设计器材选用通则》管道分级

管道级别 适用范围 SHA 1、毒性程度为极度危害介质管道(苯管道除外); 2、毒性程度为高度危害介质的丙烯腈、光气、二硫化碳和氟化氢介质管道; 3、设计压力大于或等于10.0MPa的介质管道 SHB 1、毒性程度为极度危害介质的苯管道; 2、毒性程度为高度危害介质管道(丙烯腈、光气、二硫化碳、氟化氢介质除外) 3、甲类、乙类可燃气体和甲A类液化烃、甲B类、乙A类可燃液体介质管道 SHC 1、毒性程度为中度、轻度危害介质管道; 2、乙B类、丙类可燃液体介质管道 SHD 设计温度低于-29℃的低温管道 SHE 设计压力小于10.0MPa且设计温度高于或等于-29℃的无毒、非可燃介质管道 注:①毒性程度是根据《职业性接触毒物危害程度分级》(GB5044—85)划分的。极度危害属于Ⅰ级,车间空气中有害物质最高容许浓度<0.1mg/m3;高度危害属于Ⅱ级,最高容许浓度0.1mg/m3。极度危害的介质如苯、氯乙烯、氯甲醚、氰化物等;高度危害的介质如二硫化碳、氯、丙烯腈、硫化氢、甲醛、氟化氢、一氢化碳等。详见GB5044。

②甲类、乙类可燃气体是根据《石油化工企业设计防火规范》(GB50160)中可燃气体的火灾危险性分类划分的。甲类系指可燃气体与空气混合物和爆炸下限<10%(体);乙类是≥10%(体)。甲类可燃气体如乙炔、环氧乙烷、氢气合成气、硫化氢、乙烯、丙烯、甲烷、乙烷、丙烷、丁烷等。详见GB50160。

③可燃气体、液化烃、可燃液体的火灾危险性分类是根据GB50160—92确定的,如下表。

类别 名称 特??征 举?例 甲 A 液化烃 ?15℃时的蒸气压力>0.1MPa的烃类液体及其他类似的液体 ?液化石油气、液化天然气、液化甲烷、液化丙烷等 B 可燃液体 ?甲A类以外、闪点<28℃ ?汽油、戊烷、二硫化碳、石油醚原油等 乙 A ?28℃≤闪点≤45℃ ?喷气燃料、煤油、丙苯、苯乙烯等 B ?45℃≤闪点≤60℃ ?-35号轻柴油、环戊烷等 丙 A ?60℃≤闪点≤120℃ ?轻柴油、重柴油、20号重油、锭子油等 B ?闪点≥120℃ ?蜡油、100号重油、油渣、润滑油、变压器油等 甲 可燃气体 ?可燃气体与空气混合物的爆炸下限<10%(体) 乙 ?可燃气体与空气混合物的爆炸下限≥10%(体) ???????④混合物料应以其主导物料作为分级依据。

???????⑤当操作温度超过其闪点的乙类液体,应视为甲B类液体;当操作温度超过其闪点的丙类液体,应视为乙A类液体。





一、压力管道基本概念

(一)管道的概念

根据国家标准《工业金属管道设计规范》GB50316-2000的规定,管道是由管道组成件、管道支吊架等组成,用以输送、分配、混合、分离、排放、计量或控制流体流动。

国家标准《工业金属管道工程施工及验收规范》GB50235-97的定义是:由管道组成件和管道支承件组成,用以输送、分配、混合、分离、排放、计量、控制和制止流体流动的管子、管件、法兰、螺栓连接、垫片、阀门和其他组成件或受压部件的装配总成。

按流体与设计条件划分的多根管道连接成的一组管道称之为“管道系统”或“管系”。

上述定义包含两个含义:

(A)管道的作用:是用以输送、分配、混合、分离、排放、计量、控制和制止流体流动。

1)流体:在有些标准中称为介质。流体可按状态或性质进行分类。

a)按状态分:

气体;

液体;

液化气体:是指在一定压力下呈液态存在的气体;

浆体:是指可燃、易爆、有毒和有腐蚀性的浆体介质。

b)按性质分:

火灾危险性;是指可燃介质引起燃烧的危险性,分为可燃气体、液化气体和可燃液体。有甲、乙、丙三类。

爆炸性;与空气混合后可能发生爆炸的可燃介质或在高温、高压下可能引起爆炸的非可燃介质。

毒性;按GB5044分级。有剧毒(极度危害)和有毒(高度危害、中毒危害和轻度危害)两大类四个级别。

腐蚀性。是指能灼伤人体组织并对管道材料造成损坏的物质。

2)输送流体:依靠外界的动力(利用流体输送机械如压缩机、泵等给予的动能)或流体本身的驱动力(如介质本身的压力)将管道源头的流体输送到管道的终点。

3)分配流体:通过管系中的支管将流体分配到设计规定的多个预定的设备或用户。

4)混合流体:将管系中来自不同支管中的流体在管道中进行混合,如稀释等。

5)分离流体:将管道内部不同状态的流体通过支管进行分离,如汽液分离、油水分离等。

6)排放流体:将管道内部流体通过支管进行排放,如超压放空、排放被分离的流体等。

7)计量流体:通过设置于管道系统中的计量仪表对输送、分配的流体进行计量,如测量流量、压力、温度和粘度等。

8)控制流体:通过设置于管道系统中的控制元件对管内流体的流动进行控制,如调压、减温、流体分配和切断等。

(B)管道的构成:由管道组成件、管道支吊架(管道支承件)等组成,是管子、管件、法兰、螺栓连接、垫片、阀门、其他组成件或受压部件和支承件的装配总成。

1)管道组成件:指用于连接或装配成管道的元件,包括管子、管件、法兰、垫片、紧固件、阀门以及管道特殊件。所谓管道特殊件,是指非普通标准组成件。是按工程设计条件特殊制造的管道组成件,包括膨胀节、特殊阀门、爆破片、阻火器、过滤器、挠性接头及软管等。

2)管道支吊架:用于支承管道或约束管道位移的各种结构的总称,但不包括土建的结构。有固定支架、滑动支架、刚性吊架、导向架、限位架和弹簧支吊架等。在国家标准GB50235-97《工业金属管道工程施工及验收规范》中也称为管道支承件,包括管道安装件和附着件。

a)管道安装件:指将负荷从管子或管道附着件上传递到支承结构或设备上的元件,包括吊杆、弹簧支吊架、斜拉杆、平衡锤、松紧螺栓、支撑杆、链条、导轨、锚固件、鞍座、垫板、滚柱、托座和滑动支架等。

b)附着件:用焊接、螺栓连接或夹紧方法附装在管子上的零件,包括管吊、吊(支)耳、圆环、夹子、吊夹、紧固夹板和裙式管座等。

管道组成件和支承件在我国现行压力管道法规中也统称为压力管道元件。

(二)压力管道的概念:

压力管道是管道中的一部分。从广义上理解,所谓压力管道,应当是指所有承受内压或外压的管道,无论其管内介质如何。但从我国颁发《压力管道安全管理与监察规定》以后,“压力管道”便成为受监察管道的专用名词。在《压力管道安全管理与监察规定》第二条中将压力管道定义为:“在生产、生活中使用的可能引起燃爆或中毒等危险性较大的特种设备”,国务院2003年6月1日颁发实施的《特种设备安全监察条例》中,将压力管道进一步明确为“利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性,最高工作温度高于或者等于标准渄点的液体介质,且公称直径大于25mm的管道”。这就是说,现在所说的“压力管道”,不但是指其管内或管外承受压力,而且其内部输送的介质是“气体、液化气体和蒸汽”或“可能引起燃爆、中毒或腐蚀的液体”物质。这里所谓能燃爆、能中毒或有腐蚀性,具有如下内涵:

介质的燃爆性:即介质具有可燃性和爆炸性,在一定条件下能引起燃烧或爆炸,酿成火灾和破坏。这些介质包括可燃气体、液化烃和可燃液体等有火灾危险性的物质,也包括容易引起爆炸的高温高压介质如蒸汽、超过标准沸点的高温热水、压缩空气和其他压缩气体等。其中,可燃介质的火灾危险性根据《石油化工企业设计防火规范》GB50160和《建筑设计防火规范》GBJ16,共分为甲、乙、丙三类。

其中甲、乙类可燃气体与空气混合物的爆炸下限(体积)分别规定为:

甲类可燃气体:<10%;

乙类可燃气体:≥10%。

甲、乙和丙类可燃液体的分类见表1。

表1液化烃、可燃液体的火灾危险性分类

类?别 名????称 特????????????????????????????????征 甲类 A 液化烃 150C时蒸汽压力>0.1MPa的烃类液体及其他类似液体 B 可燃液体 甲A以外的可燃液体,闪点<280C 乙类 A 可燃液体 闪点≥280C至≤450C B 闪点>450C至<600C 丙类 A 可燃液体 闪点≥600C至≤1200C B 闪点>1200C 注:闪点低于450C的液体称为易燃液体;闪点低于环境温度的液体称为易爆液体。

在GBJ16的规定中,属于甲类火灾危险性的可燃介质(或生产过程)还有:常温下能自行分解或在空气中氧化即能导致自燃或爆炸的物质;常温下受到水或蒸汽作用能产生气体并引起燃烧或爆炸的物质;遇酸、受热、撞击、摩擦、催化及遇有机物或硫磺等易燃的无机物,极易引起燃烧或爆炸的强氧化剂;受撞击、摩擦或与氧化剂、有机物接触时能引起燃烧或爆炸的物质;以及在密闭设备内操作温度等于或超过物质本身自燃点的生产。属于乙类火灾危险性的介质主要是指不属于甲类火灾危险性的氧化剂和化学易燃固体,以及助燃气体。

(B)介质的毒性:即介质具有使人中毒的特性。当这些介质被人吸入或与人体接触后,能对人体造成伤害,甚至死亡。根据《职业性接触毒物危害程度分级》GB5044的规定,毒物按急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高允许浓度等六项指标,共分为极度危害、高度危害、中度危害和轻度危害四个等级。

极度危害介质有时也称之为“剧毒介质”,高度、中度和轻度危害介质则统称为“有毒介质“。剧毒介质(流体)在我国国家标准《工业金属管道工程施工及验收规范》GB50235-97中的解释是:如有极少量这类物质泄漏到环境中,被人吸入或与人体接触,即使迅速治疗,也能对人体造成严重的和难以治疗的伤害的物质。相当于现行国家标准《职业性接触毒物危害程度分级》GB5044中级危害程度(极度危害)的毒物。据此可以将剧毒介质理解为就是极度危害介质。而有毒介质在标准中的解释是:这类物质泄漏到环境中,被人吸入或与人体接触,如治疗及时不致于对人体造成不易恢复的危害。

不过,毒性程度相同的毒物,在具体如何对待的问题上各行业也存在差异。如苯在《职业性接触毒物危害程度分级》GB5044中被列入极度危害介质,在《压力管道安全管理与监察规定》的解析中也作为极度危害介质的例子。而在《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501-2002的管道分级中,苯则被与高度危害介质同等对待。列入SHB级之中。相反,丙烯腈、光气、二硫化碳和氟化氢等四种高度危害介质则在SH3501-2002中被与极度危害介质同样看待,列入SHA级管道之中。这不但对施工质量标准和在用管道的检验要求有影响,同时对具体工程施工时划分许可证级别也是有影响的。如承担有苯介质的管道安装工作时,若苯被视为极度危害介质,施工单位应持GC1级安装许可证,而若作为高度危害介质时,则持证级别与管道的设计压力和设计温度有关。

对于这个问题的理解可以从毒物危害性分级的原则进行解释:国家标准《职业性接触毒物危害程度分级》GB5044-85对具体毒物的分级是以列举常见的56种毒物在某些行业中的危害程度分级进行表达的。但该标准同时指出:对接触同一毒物的其他行业(该标准表2中未列出的)的危害程度,可根据车间空气中的毒物浓度、中毒患病率、接触时间的长短,划定级别。凡车间空气中毒物浓度经常达到TJ36—79《工业企业设计卫生标准》中所规定的最高容许浓度值,而其患病率或症状发生率低于本分级标准中相应的值,可降低一级。所以,对每种具体物质,国家标准和专业标准在划分危害等级时存在差异是正常的。因为除了致癌性和空气中最高容许浓度外,其他四项指标都与生产过程和操作特点有关。石油、化工和石油化工等以管道输送介质为主的生产过程,有毒物质处于连续、密闭状况下流动,其危害程度取决于因事故致使毒物与人体接触,或因经常性泄漏引起职业性慢性危害的机率,通常要低于开放性生产过程。因此,在压力管道设计时具体确定毒物危害等级应主要以车间空气中毒物浓度、中毒患病率、接触时间长短来划定。

???上面提到的毒物危害性分级指标中,关于车间空气中毒物的最高允许浓度规定如下:

???极度危害:最高允许浓度小于0.1mg/m3;

???高度危害:最高允许浓度为0.1mg/m3~1.0mg/m3。

根据《工业企业设计卫生标准》(TJ36—79)的规定,苯、丙烯腈、光气、二硫化碳和氟化氢等五种毒物在车间空气中和居住区大气中的最高允许浓度见表2:

表2??????????????????????????????????几种毒物的最高允许浓度

毒物名称 苯 丙烯腈 光气 二硫化碳 氟化氢 车间空气允许浓度

(mg/m3) 40.0 2.0 0.5 10.0 1.0 居住区大气允许浓度

(日平均mg/m3) 0.8 0.05 —— 0.04

(一次) 0.007

(一次0.02) 由表2可见,苯在车间空气中的最高允许浓度远远高于极度危害介质。同时,根据工业生产中管道输送的连续性、密闭性特点,以及苯与操作人员的接触时间长短和中毒患病率的情况分析,苯也不应属于极度危害介质的范围。所以,实际工作中确定介质的毒害程度应以设计文件确定的毒物性质或设计文件中指明的施工验收规范为准。??

另外,关于接触时间长短我国尚未制定有关标准,美国政府工业卫生专家会议(ACGIH)推荐的三种接触阈限值可作为参考:

1)以正常8小时工作日或40小时工作周的时间加权平均限值为指标,在此浓度下,反复接触对全部人员都不致产生不良影响;

2)以短时间接触(每次不超过15分钟,每天不超过4次,每次间隔不少于1小时)的时间加权平均限值为指标,在此浓度下,人短时间连续接触不致引起刺激作用、慢性或不可逆组织病理变化、麻醉而增加意外伤害、自救能力减退或工作效率明显降低等;

3)上限值是指即使在瞬间也不得超过的最高浓度。

(C)介质的腐蚀性:是指能灼伤人体组织并对管道材料造成损坏的物质,如酸、碱以及其它能引起材料损害的流体如氢、硫化氢等。

(三)压力管道的安全监察范围

根据《压力管道安全管理与监察规定》,属于安全监察范围的压力管道是具备下列条件之一的压力管道及其附属设施、安全保护装置等。

1)毒性程度为极度危害的介质,不论压力,温度及状态;

2)火灾危险性为甲、乙类的介质,不论压力、温度及状态;

3)最高工作压力大于、等于0.1MPa的气(汽)体、液化气体介质,未规定性质及温度,但《压力管道安全管理与监察规定》中规定不属于监察范围的除外。

4)最高工作压力大于、等于0.1MPa的易燃、易爆、有毒,有腐蚀性介质或最高工作温度高于、等于标准沸点的液体介质。

《压力管道安全管理与监察规定》中规定以下四类管道不属于监察范围:

??a)设备本体所属管道。

??b)军事装备,交通工具和核装置中的管道。

??c)无毒、不可燃、无腐蚀性的气体,公称直径小于150mm且最高工作压力小于1.6??MPa的管道。

这里,所谓压力管道所属设施及安全保护装置的定义是:

a)附属设施主要指用于压力管道的管道用设备、支吊架、阴极保护装置等。

b)安全保护装置主要指超温、超压控制装置和报警装置等。

注:最近颁发的《压力管道使用登记管理规则》(试行)中对压力管道、附属设施和安全保护装置的界定,明确为:

a)压力管道指由管道组成件、管道支承件、安全保护装置和附属设施等组成的系统。用于输送气体或者液体的管状设备;

b)附属设施指阴极保护装置、压气站、泵站、阀站、调压站、监控系统等;

c)安全保护装置指压力管道上连接的安全阀、压力表、爆破片和紧急切断阀等。

?

二、压力管道的主要特点和结构要求

(一)压力管道的特点

一个管道系统,为了完成流体的输送、分配、混合、分离、排放、计量或控制流体流动的功能,必须与相应的动力设备、反应设备、储存设备、分离设备、换热设备、控制设备等连接在一起,形成一个系统,使管内流体具有一定的压力、温度和流量,完成设计预定的任务。同时,不同类别的压力管道,由于材料、结构和敷设形式不同,其特点也有所不同:

(A)工业管道的特点

1)数量多,管道系统大,车间内管道布置交叉、紧凑;

2)管道组成件和支承件的材质、品种、规格复杂,质量均一性差;

3)运行过程受生产过程波动影响,运行条件变化多,如热胀冷缩、交变载荷、温度和压力波动等;

4)腐蚀和破坏机理复杂,材料失效模式多。

(B)长输管道和公用管道的特点

1)管道敷设长度大,跨越地区多,地形地质复杂;

2)埋地敷设多,缺陷检测难度大;

3)容易遭受意外损伤。

(二)压力管道的结构要求

压力管道由于输送的流体具有毒性、燃爆性和腐蚀性,且又有高温、高压、低温等特殊操作条件,使其具有相当大的危险性。因此,压力管道系统结构应当具备下列条件:

耐压强度:承受管内流体作用于管道上的压力(内压或外压)、温度所引起的应力及其长期、反复的影响,如蠕变和疲劳等;

密封性:阻止管道内部流动的流体泄漏到管道外部空间或流体中;

耐腐蚀性:承受管内流体对管道材料的腐蚀作用。管道材料的耐腐蚀等级分为4级,以年腐蚀速率衡量:充分耐腐蚀≤0.05mm;

耐腐蚀>0.05~0.1mm;

尚耐腐蚀>0.1~0.5mm;

不耐腐蚀>0.5mm;

柔性:管道的柔性是反映管道变形难易程度的一个物理概念。管道在设计条件下工作时,因热胀冷缩、端点附加位移、管道支承设置不当等原因会产生应力过大、变形、泄漏或破坏等影响正常运行的情况。管道的柔性就是管道通过自身变形吸收因温度变化发生尺寸变化或其他原因所产生的位移,保证管道上的应力在材料许用应力范围内的性能。

为了满足上述条件,管道系统的管道组成件必须使用耐介质腐蚀,有能够在设计规定温度下承受介质作用压力的材料,且有相应的壁厚和密封结构。同时整个管道系统应有适当的支承。

在一些标准规范中,经常出现“剧烈循环条件”这一名词。根据《工业金属管道设计规范》GB50316-2000的解释,剧烈循环条件是指:管道计算的最大位移应力范围超过0.8倍许用的位移应力范围和当量循环数大于7000或由设计确定的产生相等效果的条件。所谓“位移应力范围”是指:由管道热膨胀产生的位移所计算的应力。计算的最大位移应力范围就是从最低温度到最高温度的全补偿值进行计算的应力。设计对剧烈循环条件下运行的管道,在管道组成件的选用、管子和管件的最小厚度、无损检测的要求等均有特殊的规定。

三、压力管道的分类和分级

管道的用途广泛,品种繁多。不同领域内使用的管道,其分类方法也不同。一般可以按用途、主体材料、敷设状态和输送介质等管道使用特性进行分类。具体情况可见图1。

在一般法规、标准、规范中,为了便于设计、施工验收和使用管理和检验,往往根据介质的特性和设计参数采用综合分类、分级的方法,同时,在各行业的设计规范,施工验收规范和维修、检验规程之间,对管道的分级或分类尚存在差异。如:

国家标准《工业金属管道设计规范》GB50316中的流体根据状态、性质和设计参数分为A1、A2、B、C、D五类。A1类为剧毒介质;A2类为有毒介质B类为可燃介质;C类、D类为非可燃、无毒介质,其中设计压力小于等于1MPa,且设计温度为-29~186℃的为D类。化工、石油化工和电力等行业的施工及验收规范对管道的分级或分类如下:

化工行业标准《化工金属管道工程施工及验收规范》HG20225—95按流体特性和设计参数分为A、B、C、D四类。基本与国家标准一致,但将有毒介质管道划入B类管道。

石油化工行业标准《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501—2002按流体特性和设计参数分为SHA、SHB、SHC、SHD四级,如表3。

表3??????????????????????????????????????????????????????SH3501-2001管??道??分??级

管道级别 适?用?范?围 SHA 1毒性程度为极度危害介质管道(苯管道除外)

2毒性程度为高度危害介质的丙烯腈、光气、二硫化碳和氟化氢介质管道

3设计压力大于或等于10.0MPa的介质管道 SHB 1毒性程度为极度危害介质的苯管道

2毒性程度为高度危害介质管道(丙烯腈、光气、二硫化碳和氟化氢管道除外)

3甲类、乙类可燃气体和甲A类液化烃、甲B类、乙A类可燃液体介质管道 SHC 1毒性程度为中度、轻度危害介质管道

2乙B类、丙类可燃液体介质管道 SHD 设计温度低于-29℃的低温管道 ?

电力行业标准《电力建设施工及验收技术规范》(管道篇)DL5031—94按设计压力分为高压、中压和低压三级管道。设计压力大于8MPa的为高压管道;设计压力大于1.6MPa,小于等于8MPa的为中压管道;设计压力小于等于1.6MPa的为低压管道。

《压力管道安全管理与监察规定》将压力管道分工业管道、公用管道和长输管道三类。这主要是从管道的用途和地域特性进行的分类,其具体定义是:

(1)工业管道:企业、事业单位所属的用于输送工艺介质的工艺管道、公用工程管道及其他辅助管道。其地域特性是一个企业或事业单位内使用的管道;

(2)公用管道:城市或乡镇范围内用于公用事业或民用的燃气管道和热力管道,其地域特性是一个城市或乡镇范围内使用的管道;

(3)长输管道:产地、储存库、使用单位间用于输送商品介质的管道,其地域特性是跨地区(跨省、跨地市)使用的管道。

?????????????????????????????????????????????????????????

?

?图1????????管道分类

目前我国一些综合性特大型企业往往是由许多工厂联合组成的,不但占地面积大,而且工厂之间的联系多,工厂和职工生活区之间也无明显界限。因而使工厂与工厂之间的原料、动力、产品输送管道,以及工厂与居民生活区之间的民用燃气、热力供应管道的类别难以界定。特别是一些民用的公用管道直接来自工厂的工业管道系统,其界限就更难以划分。由于他与压力管道的安全监察有关,在具体问题上还要根据具体情况研究处理。

在安全监察范围内的压力管道,根据《压力容器压力管道设计单位资格许可与管理规则》和《压力管道安装单位资格认可实施细则》的规定,压力管道的具体分类、分级如下:

(一)长输管道

(A)符合下列条件之一的长输管道为GA1级:

1)输送有毒、可燃、易爆气体介质,设计压力>1.6MPa的管道;

2)输送有毒、可燃、易爆液体介质,输送距离≥200km,且公称直径≥300mm的管道;

3)输送浆体介质,输送距离大于等于50km,且公称直径≥150mm的管道;

(B)符合下列条件之一的长输管道为GA2级:

1)输送有毒、可燃、易爆气体介质,设计压力≤1.6MPa的管道;

2)GA1(2)范围以外的管道;

3)GA1(3)范围以外的管道。

(二)公用管道

(A)燃气管道;

(B)热力管道。

(三)工业管道

(A)符合下列条件之一的工业管道为GC1级:

1)输送GB5044《职业性接触毒物危害程度分级》中规定毒性程度为极度危害介质的管道;

2)输送GB50160《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质且设计压力P≥4.0MPa的管道;

3)输送可燃流体介质、有毒流体介质,设计压力≥4.0MPa且设计温度≥4000C的管道;

4)输送流体介质且设计压力P≥10.0MPa的管道。

(B)符合以下条件之一的工业管道为GC2级:

1)输送GB50160《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质且设计压力P<4.0MPa的管道;

2)输送可燃流体介质、有毒流体介质,设计压力<4.0MPa,且设计温度≥4000C的管道;

3)输送非可燃流体介质、无毒流体介质,设计压力<10MPa,且设计温度≥4000C的管道;

4)输送流体介质,设计压力<10MPa,且设计温度<4000C的管道。

(C)符合以下条件之一的GC2级管道划分为GC3级:

1)输送可燃流体介质、有毒流体介质,设计压力<1.0?MPa,且设计温度<4000C的管道;

2)输送非可燃流体介质、无毒流体介质,设计压力<4.0MPa且设计温度<4000C的管道。

??????工业管道的级别划分可用图2至图6表示。

?

?









??设计

?压力 介??????????????质??????????????特?????????????????性 无毒,非可燃流体 有毒,非甲、乙类可燃气体,非甲类可燃液体 甲、乙类可燃气体,甲类可燃液体 极度危害流体 P<1MPa ??????T<400℃

??????GC3???????

???(2)????

??????????????????

??????????????????

????Т≥400℃?

??GC2

(4)??? T<400℃

GC3

(1) GC2

(1) GC1

(1) P<4MPa

≥400℃

GC2

(2) P≥4MPa Т≥400℃

GC2

(3) Т≥400℃

GC1

(3)

GC1

(2) P≥10MPa GC1

(4) GC1

(4) GC1

(4) ?

图6???GC类压力管道分级图

这里要注意的是:工业管道方面在《压力管道安装单位资格认可实施细则》与《压力容器压力管道设计单位资格许可与管理规则》中的分级略有不同,考虑到压力管道安装单位的特点,《压力管道安装单位资格认可实施细则》将《压力管道设计单位资格认证与管理办法》中的“GC2”级又细分为GC2、GC3两级。其主要理由是目前存在一些规模较小只从事GC3级别压力管道安装的单位。

管道分级是对受监察管道来说的,对于受监察范围以外的管道,就不在分级范围内。如工业生产中非可燃流体介质、无毒流体介质管道中如果是沸点温度以下的水,即使压力再高,也不属于压力管道,自然也不在分级范围内,不能把它视为GC3级管道。

?

四、压力管道的失效和事故

(一)压力管道失效的原因

压力管道“失效”一般是指压力管道不能发挥原有效能的现象,可分为自然失效和异常失效两种。由于压力管道运行在内部介质和周围环境的影响之下,不可避免地会产生温度和压力循环、腐蚀、振动以及材料金相组织变化等影响材料性能和连接接头密封性能的问题,因此任何管道都有一定的使用寿命,自然失效就是在压力管道达到使用寿命时发生的失效现象。自然失效可以通过定期检验或失效分析进行事先控制,以防止事故的发生。但是,在用压力管道由于在设计、制造、安装和运行中存在各种问题会导致异常失效,造成突发性破坏事故的发生。其原因主要有:

(A)职工素质差,违反操作规程运行,致使运行条件恶化,包括超压、超温、腐蚀性介质超标、压力温度异常脉动等;

使用压力和温度是压力管道设计、选材、制造、安装的依据。操作压力和温度超过规定将导致管壁应力值的增加或材料力学性能的下降,尤其是在焊缝、法兰、弯头、阀门、异径管、补偿器等几何结构不连续处的局部应力和峰值应力会大幅增加,成为蠕变破坏的源头。过低的操作温度则会引起材料韧性下降,允许的临界裂纹尺寸减小,从而有可能导致脆性破坏。超温超压还会导致管道接头泄漏。

管道往往由于下列原因而产生交变载荷:

1)间断输送介质而对管道反复加压和卸压、升温和降温;

2)运行中压力波动较大;

3)运行中温度发生周期性变化,使管壁产生反复性温度应力变化;

4)因其它设备、支承的交变外力和受迫振动。

在反复交变载荷的作用下,管道将发生疲劳破坏。主要是金属的低周疲劳,其特点是应力较大而交变频率较低。在几何结构不连续的地方和焊缝附近存在应力集中,有可能达到和超过材料的屈服极限。这些应力如果交变地加载和卸载,将使受力最大的晶粒产生塑性变形并逐渐发展为细微的裂纹。随着应力周期变化,裂纹也会逐步扩展,最后导致破坏。

交变载荷也会导致管道组成件和焊缝内部原有缺陷的扩大和管道连接接头的泄漏。

(B)设计、制造、施工存在缺陷,如管道柔性不符合要求,材料选用不当或用材错误,存在焊接或冶金超标缺陷,焊接或组装不合理造成应力过大,管道支承系统不合理等;

管道在投用前存在的原始缺陷会造成材料的低应力脆断。介质和环境的侵害、操作不当、维护不力等原因,往往会引起材料性能恶化、材料损伤或破裂,或使管道连接接头发生介质泄漏,最终使压力管道失效,导致火灾、爆炸和中毒、窒息等人身事故的发生。

(C)维修失误,管道上的严重缺陷或损伤未能被检测发现,或缺少科学评价,以及不合理的维修工艺造成新的缺陷和损伤等;

(D)外来损伤造成破坏,如地震、大风、洪水、雷击和其它机械损伤和人为破坏等。

压力管道的破坏型式很多。按破坏时的宏观变形量可分为韧性破坏(延性破坏)和脆性破坏两大类。按破坏时材料的微观断裂机制可分为韧窝断裂、解理断裂、沿晶断裂和疲劳断裂等型式。通常,在现场采用宏观分类和断裂特征相结合的方法进行分类,有韧性破坏、脆性破坏、腐蚀破坏、疲劳破坏、蠕变破坏等。

(E)腐蚀破坏

压力管道的腐蚀是由于受到内部介质及外部环境介质的化学或电化学作用而发生的破坏。也包括机械等原因的共同作用结果。不合理的操作会导致介质浓度的变化,加剧腐蚀破坏。

压力管道的腐蚀破坏的形态有全面腐蚀、局部腐蚀、应力腐蚀、腐蚀疲劳和氢损伤等。其中应力腐蚀往往在没有先兆的情况下突然发生,故其危害性更大。

1)全面腐蚀

全面腐蚀也称均匀腐蚀。是在管道较大面积上产生的程度基本相同的腐蚀。管道内部表面主要遭受输送腐蚀性介质的腐蚀,而管道外部则主要遭受大气锈蚀。

管道的全面腐蚀往往因使用条件的恶化而加剧。腐蚀介质的成分、含水量、气相或液相的不同、流速和流动状态、颗粒大小都会影响管道腐蚀失效的程度。腐蚀介质含量的超标或原料性质的劣化会对压力管道产生危害。

大气腐蚀会使管道组成件外部遭受损坏,影响管道组成件的强度和密封性。如不及时维护,也会引起事故。

2)局部腐蚀

局部腐蚀是发生在管道材料局部位置的腐蚀现象。

a)点腐蚀:集中在金属表面个别小点上的深度较大的腐蚀,也称孔蚀。奥氏体不锈钢在接触含氯离子或溴离子的介质时最容易发生点腐蚀。

b)缝隙腐蚀:当管道输送的介质为电解质溶液时,在管道内表面的缝隙处,如法兰垫片处、单面焊的未焊透处等,均会发生缝隙腐蚀。缝隙腐蚀往往是由于缝隙内和周围溶液之间氧浓度或金属离子浓度存在差异造成。

c)奥氏体不锈钢焊接接头的腐蚀:

①晶间腐蚀:晶间腐蚀是腐蚀局限在晶间和晶间附近,而晶粒本身腐蚀较小的一种腐蚀形态。腐蚀机理是“贫铬理论”,即由于贫铬的晶间区处于活化状态,作为阳极,它与晶粒之间形成腐蚀原电池,其结果将造成晶粒脱落或使材料机械强度降低。

②δ铁素体选择性腐蚀:在某些强腐蚀介质中,奥氏体不锈钢焊缝处的δ铁素体相会被腐蚀或分解为σ相,结果呈海绵状而使焊接接头遭受破坏。

③刀口腐蚀:用Ni及Ti稳定的奥氏体不锈钢,在氧化性介质中发生的刀口状腐蚀。

3)应力腐蚀

金属材料在拉应力和特定腐蚀介质的共同作用下发生的腐蚀称为应力腐蚀。主要由焊接、冷加工和安装时的残余应力和管道内部的腐蚀性介质引起。应力腐蚀的裂纹呈枯树支状,大体上沿垂直于拉应力的方向发展。裂纹的微观形态有穿晶型、晶间型和二者兼有的混合型。高强钢管道在H2S含量超过一定值,并伴有水分时,会大大增加管壁应力腐蚀开裂的可能性。当焊缝硬度值超过HB200,含H2S超标时,极易导致焊缝的应力腐蚀。

①碱脆:是金属在碱液中的应力腐蚀。碳钢、低合金钢和不锈钢等均可发生碱脆。

②不锈钢的氯离子腐蚀:氯离子对不锈钢产生的应力腐蚀。导致氯离子腐蚀的氯离子临界浓度随温度上升而下降,高温下,氯离子浓度只要达到10ppm即可引起破裂。管道法兰连接处的垫片、外部的保温材料和支、吊架的垫层等材料中含氯离子的成分过高,也会导致氯离子腐蚀。

③不锈钢连多硫酸腐蚀:在石油炼制过程中,钢材受硫化氢腐蚀生成硫化铁,停车后管道内部与空气中的氧及水反应生成多硫酸,在不锈钢管道的残余应力较大处即会产生应力腐蚀。以加氢脱硫装置为典型,不锈钢连多硫酸的应力腐蚀破坏最近引人注目。

④硫化物应力腐蚀:金属在同时含硫化氢和水的介质中发生的应力腐蚀。碳钢和低合金钢在20~40℃温度范围内对硫酸的敏感性最大。奥氏体不锈钢的硫化物应力腐蚀大多发生在高温环境。在含硫化氢和水的介质中,如同时含有醋酸,或二氧化碳和氯化钠,或磷化氢,或砷、硒、碲的化合物或氯离子,都会对腐蚀起促进作用。

4)腐蚀疲劳

腐蚀疲劳是交变应力与化学介质共同作用下发生的腐蚀开裂。压力管道的疲劳源有机械激振、流体喘振、交变热应力、压力循环以及风振、地震等。腐蚀疲劳裂纹往往有多条但无分支,这是与应力腐蚀裂纹的区别。腐蚀疲劳裂纹一般是穿晶的。

5)氢损伤

氢渗透进入金属内部造成金属性能劣化称为氢损伤。包括氢鼓泡、氢脆、脱碳和氢腐蚀。

氢鼓泡主要发生在含湿硫化氢的介质中,当氢原子向钢中渗透扩散时,遇到了裂纹、分层、空隙、夹渣等缺陷就聚集起来合成氢分子,使体积膨胀。当这些缺陷在钢材表面时就会形成鼓泡。

氢不论是以什么方式进入钢都会引起钢材氢脆,使钢材的延伸率、断面收缩率显著下降。高强度钢表现更加严重。

钢中的渗碳体在高温下与氢气作用生成甲烷,反应结果使钢材表面层的渗碳体减少,使碳从邻近的尚未反应的金属层逐渐扩散到这一反应区,于是有一定厚度的金属因缺碳而变为铁素体,出现脱碳现象。脱碳的结果使钢材的表面强度和疲劳极限降低。

高温高压氢对钢材作用的结果使其机械性能变劣,强度、韧性显著降低,称为氢腐蚀。在上述条件下,氢分子扩散到钢的表面并产生吸附,其中部分被吸附的氢分子分离为氢原子和氢离子,经化学吸附,然后直径很小的氢原(离)子透过表面层固溶到金属内。因溶入的氢原子通过晶格和晶界向钢内扩散,产生化学反应形成甲烷聚集在晶界原有微观空隙内,反应过程使该区域的碳浓度降低,促使其他位置上的碳向其扩散补充,从而使甲烷量不断增多形成局部压力,最后发展为裂纹。聚集在钢材表面的形成鼓泡,产生脱碳。

(F)冲蚀破坏

管道内部介质的长期、高速流动会使管道组成件内壁减薄或密封副遭受破坏,影响其耐压强度和密封性能。随着使用时间的延长,由内壁减薄造成的耐压能力下降或密封副损坏而形成的泄漏便会成为事故的根源。

(二)破坏特征

由于管道破坏的起因和型式不同,所以破坏的特征也有所区别。

(A)韧性破坏是材料不存在明显的缺陷或脆化,而是由于超压导致的破坏。其特征有:

1)发生明显变形,一般不产生碎片。破坏时直径增大或局部鼓胀,管壁减薄。

2)实际爆破压力与理论值相近。

3)断口呈灰暗纤维状,无金属光泽,断面有剪切唇。

4)断口纤维区之外呈放射形花纹或人字形花纹,并有指向起爆点的特点。

(B)脆性破坏是管道破坏时没有发生宏观变形,破坏时的管壁应力也远未达到材料的强度极限,甚至低于屈服极限的破坏现象。通常是由于材料的脆性或严重的缺陷引起,如材料的焊接和热处理工艺不当,焊缝存在缺陷以及低温引起的冷脆等。脆性破坏往往是瞬间发生,并以极快的速度扩展。因为其是在低应力下发生的破坏,故也称低应力破坏。脆性破坏的特征是:

1)无明显的塑性变形。

2)破坏时的应力较低。

3)材料脆化形成的脆性破坏,其断口平齐,呈金属光泽的结晶状态。

4)因材料缺陷形成的脆性破坏,其断口不呈结晶状,而出现原始缺陷区、稳定扩展的纤维区、快速扩展的放射纹和人字纹区以及内外表面边缘的剪切唇区。原始缺陷如是表面裂纹,则会出现深色的锈蚀状态,如原始缺陷是内部气孔、夹渣、未焊透等,也会在断口上观察到。

(C)疲劳破坏是材料长期承受大小和方向都随时间而周期变化的交变载荷作用下发生疲劳裂纹核心,逐渐扩展最后形成断裂的破坏形式。其特征是:

1)破坏部位集中在几何不连续处或有裂纹类原始缺陷的焊缝处,整体上无塑性变形。

2)疲劳破坏的基本形式有爆破或泄漏两种。前者易发生在强度高而韧性差的材料中,后者则发生于强度较低而韧性较好的材料中。

3)断口上有明显的裂纹产生区、扩展区和最终断裂区。在扩展区,宏观上有明显的贝壳状树纹,且断口平齐、光亮。最终断裂区一般有放射状的花纹或人字纹。

4)电镜下观察疲劳断口的裂纹扩展区时,可见到独特的疲劳辉纹。

(D)蠕变破坏是钢材在高温下低于材料屈服强度时发生的缓慢持续的伸长,最后产生破坏的现象。材料发生蠕变的过程有减速、恒速和加速三个阶段。恒速阶段是控制材料高温使用寿命的阶段。蠕变断裂是沿晶断裂,其特征是:

1)宏观断口呈粗糙的颗粒状,无金属光泽。

2)表面为氧化层或其他腐蚀物覆盖。

3)管道在直径方向有宏观变形,并有沿径向方向的小蠕变裂纹,甚至出现表面龟裂或穿透管壁而泄漏。

4)断口与壁面垂直,壁厚无减薄,边缘无剪切唇。

(三)事故防范和报告

为了防止或减少压力管道的破坏事故,使用单位应采取必要的措施,包括:

——管道必须由有资格的设计单位进行设计并符合设计规范的规定;

——管道系统应按规定装设安全泄压装置并保持其灵敏好用;

——采取有效措施防止大气及介质对管道的腐蚀;

——管道投用前应进行役前检查和验收,管系结构、材料、焊接、热处理、压力试验等关键环节必须符合规定要求;

——运行操作必须严格执行操作规程,控制工艺指标,杜绝超温、超压运行;

——检修或局部更换管道时,避免错用或不合理代用而降低管道的极限应力;

——加强对管道的维护检查和定期检验;

——对长期放置不用、维护不良的管道,因发生大面积腐蚀、厚度减薄、强度减弱,再次启用前应按规定进行全面检验。

当压力管道发生安全事故后,使用单位除应迅速采取措施进行处理外,还应注意严格保护事故现场,及时收集有关信息和资料,如现场录制的图像、损坏件的断口状况、原始操作记录以及事故调查报告等,以对事故分析提供客观、科学的依据。

对事故原因进行分析时,应采取测量宏观变形量;检验材料的化学成分和机械性能;进行断口的宏观分析和显微分析等技术手段。然后依据有关资料和技术检验结果进行事故综合分析,包括破坏程度,爆炸性质和破坏形式,最后找出事故原因,以吸取教训,防范未然。

五、对压力管道材料的一般要求

(一)对管子和管件的要求

(A)压力管道受压元件用钢应用平炉、电炉或纯氧顶吹转炉冶炼。低温管道用钢应使用镇静钢。

(B)管材应选用流体输送用无缝钢管或焊接钢管。

(C)当直缝焊接钢管系非钢管制造厂生产线制造(如施工单位现场制造)而用于下列场合时,所用钢板应逐张进行超声波检测,其合格等级为调质钢不低于Ⅱ级,其它不低于Ⅲ级。

1)低温钢板厚度大于20mm;

2)20R及16MnR钢厚度大于30mm;

3)其它低合金钢厚度大于25mm;

4)各种厚度的调质钢板。

(D)管道组成件的无损检测、晶间腐蚀倾向试验、低温冲击韧性试验不应低于现行国家或行业标准中规定的要求。在现行国家或行业标准中指定按用户要求协商决定的产品,其上述检测试验结果应在质量证明书中说明。

非钢管制造厂生产线制造的直缝焊接钢管的焊缝无损检测比例按设计规范执行。用于GC1级压力管道、低温管道和剧烈循环条件管道的直缝焊接钢管应经100%无损检测。

(E)管道材料在加工和焊接后的热处理应按设计和施工规范规定进行。公称直径大于100mm或壁厚大于13mm的铁素体合金钢弯管、有应力腐蚀的冷弯弯管和焊接接头必须进行热处理。

(F)管道材料的使用温度不能超过设计规范中规定的材料许用温度的上、下限。

(G)在国家和行业标准中,对管道组成件的公称压力及对应的工作压力—温度参数值(等级)已作出规定者,均应按规定使用。对于只标明公称压力的管道组成件,除另有规定外,在设计温度下的许用压力应按材料在设计温度下的许用应力和计算温度下的许用应力的比值进行换算。

(H)低温管道对材料的要求

1)管道设计温度低于-20℃,而高于规范规定的使用温度下限的碳素钢、低合金钢、中合金钢、高合金铁素体钢和含碳量大于0.1%的奥氏体不锈钢,出厂材料及采用焊接堆积的焊缝金属和热影响区应进行低温冲击试验,但下列情况除外:

a)使用温度等于或高于-45℃,且不低于规范规定的使用温度下限,同时材料的厚度不能制备5mm厚冲击试样时;

b)除抗拉强度下限值大于540MPa的钢材及螺栓材料外,使用的材料在低温低应力工况(设计温度低于或等于-20℃,环向应力小于或等于钢材标准中屈服点的1/6,且不大于50MPa)下,若设计温度加50℃后,高于-20℃时。

2)奥氏体高合金钢的使用温度等于或高于-196℃时,可免作低温冲击试验。

3)20R钢板使用温度低于0℃,厚度大于25mm或使用温度低于-10℃,厚度大于12mm时,应作低温冲击试验;

4)除低温钢外,其它低合金钢板使用温度低于0℃,厚度大于38mm时,或使用温度低于-10℃,厚度大于20mm的16MnR、15MnVR和15MnVNR钢板应作低温冲击试验;

5)需热处理的低温材料,应在热处理后进行冲击试验。制造厂已作过冲击试验的材料,加工后如经热处理,也应进行低温冲击试验。

(I)剧毒介质、有毒介质和可燃介质管道以及剧烈循环条件管道的材料应按设计规范的规定限制使用,如带填料密封的补偿器不能用于剧毒介质、有毒介质和可燃介质管道;剧毒介质管道不得使用任何脆性材料等。

(二)其它规定

(A)阀门的试验和解体检查按设计和施工规范进行。设计规定应进行低温密封试验的阀门应有制造厂进行低温密封试验的合格证明。

(B)合金钢管道组成件应按规范要求在安装前进行合金元素光谱分析,使用前应进行核查。

(C)用于不锈钢法兰的非金属垫片,其氯离子含量不得超过50ppm。

(D)在剧烈循环条件下,应采用对焊法兰,法兰连接接头的螺栓应采用合金钢材料。公称直径大于40的,不应采用承插焊接接头。螺纹连接只能用于温度计套管。钎焊接头不能使用。

(E)有缝隙腐蚀的流体工况下,不应使用承插焊接接头和螺纹密封连接接头。

六、管道系统的安全规定

(一)超压保护

(A)在运行中可能超压的管道系统均应设置安全阀、爆破片等泄压装置。

(B)不宜使用安全阀的场合可用爆破片。爆破片设计爆破压力与正常最大工作压力的差值应有一定的裕量。

(C)安全阀应分别按排放气(汽)体或液体进行选用,并考虑背压的影响。安全阀的开启压力(整定压力)除工艺有特殊要求外,为正常工作压力的1.1倍,最低为1.05倍,但设计规范和设计文件有规定者除外。

(D)安全阀的入口管道压力损失宜小于开启压力的3%,出口管道的压力损失不宜超过开启压力的10%。

(E)安全阀的最大泄放压力不宜超过管道设计压力的1.1倍,火灾事故时的最大泄放压力不应超过设计压力的1.21倍。

(F)安全阀或爆破片的入口管道和出口管道上不宜设置切断阀。工艺有特殊要求必须设置时,还应设置旁通阀及就地压力表。正常工作时安全阀或爆破片入口或出口的切断阀应在开启状态下锁住。旁通阀应在关闭状态下锁住。并在图纸上加注规定的符号。

(G)双安全阀出入口设置三通式转换阀时,两个转换阀应有可靠的连锁机构。安全阀与转换阀之间的管道应有排空措施。

(H)制造厂应保证产品性能符合设计提供的泄压装置详细数据。

(二)阀门和盲板设置

(A)需防止倒流的管道上应设置止逆阀。

(B)正常运行中必须严格控制在开或关位置的阀门,设计应附加锁定或铅封的要求,并注明规定的代号。此类阀门只允许维修时在严格监督下使用并经有关负责人批准。

(C)当装置停修时装置外有可能或要求继续运行的管道,在装置边界处除设置切断阀外还应在阀门靠装置一侧设置盲板。

(D)运行中当有设备需切断检修时,在设备和阀门之间应设置盲板。对于可燃流体管道、阀门和盲板之间装有小放空阀时,放空阀后的管道应引至安全地点。

(E)压力试验和气密试验需隔断的位置应设盲板。

(F)液体温度低于-5℃或大气腐蚀严重场合宜使用分离式盲板,即插板与垫环。不宜使用“8”字盲板。插板与垫环应有识别标记,标记部位应伸出法兰。

(三)排放

(A)可燃流体应排入封闭的收集系统,严禁直接排入下水道。

(B)密度比环境空气大的可燃气体应排入火炬系统,密度比环境空气小的可燃气体,在允许不设火炬及符合卫生标准的情况下可排入大气。

(C)无毒、不可燃、无闪蒸的流液体,在符合卫生标准及水道材料使用温度和无腐蚀的情况下,可直接排入下水道。

(D)排放管应按排放量和工作压力决定管径。排放口流速应符合设计规范规定。不经常使用的常压放空管口应加防鸟网。

(四)其他要求

(A)在寒冷气候条件下,室外的冷却水总管末端和冷却器进出水管道应设防冻旁通管或其他防冻措施。气体管道有冷凝液产生或液体管道有死角区,以及排液管有可能冻结时,宜设伴热管。

(B)安装在室内的可燃流体管道的薄弱环节的组成件,如玻璃液位计、视镜等应有安全防护措施。

(C)管道系统所产生的静电可通过设备或土建结构的接地网接地。其他防静电要求应符合相应标准的规定。

(D)不允许流体中断的重要设备宜采用双管或设置带有隔断阀门的环状管网等安全措施。

(E)与明火设备连接的可燃气体减压后的管道(包括火炬管道),和需隔断易着火的管道(包括放空管)与其连接的设备时应设阻火设施。

(F)氧气管道应符合下列规定:

1)强氧化性流体(氧或氟)管道应在管道预制后、安装前分段或单件进行脱脂。脱脂后的管道组成件一概采用氮气或空气吹净封闭。并应避免残存脱脂介质与氧气形成危险的混合物。

2)氧气管道组成件选用应符合规范规定。并宜选用无缝管子和管件。设计压力大于3MPa时宜采用奥氏体不锈钢管。碳钢和低合金钢管道上设有调压阀时,调压阀前后1.5m范围内宜采用奥氏体不锈钢管及管件。阀门不应使用快开、快闭型,阀内垫片及填料不应采用易脱落碎屑、纤维的材料或可燃材料。

3)焊接应采用氩弧焊。

4)氧气管道流速限制、静电接地及管道布置应符合《氧气站设计规范》GB50030和氧气安全技术规程的规定。除非工艺流程有特殊设计要求及可靠的安全措施保证,氧气管道严禁与可燃流体管道直接连接。

(G)夹套管应根据流体凝固点高低,其他物性改变条件及工艺要求分别选择全夹套、部分夹套或简易夹套结构。

七、压力管道安装基本流程

(1)工业管道

?????工业管道为了便于操作和维修,除了少量需在管沟内安装外,一般都在地面支承结构上敷设。其一般施工程序如图2所示。

?

?????????????????????图7?????工业管道安装一般施工程序

?(2)长输管道和公用管道的施工程序

对于管外或管内外有防腐要求的长输管道、公用管道和其他埋地管道,因其大量防腐工作往往是在预制阶段完成的。同时由于管道穿越地域大,沿途地形复杂,管道敷设前需进行测量、放线、施工道路修建、运管、布管、挖沟、管基处理等工序,其施工程序与一般工业管道不同。长输管道和公用管道(含穿、跨越工程)的施工程序可见图8。

?

设计交底图纸审查



? 原材料、管道组成件、支承件验收检验



? ????

?????????????????????图8???长输管道和公用管道的施工程序





石油化工管道安装100问?????????装置设备布置设计的一般要求是什么?

答:(1)满足工艺流程要求,按物流顺序布置设备;

(2)工艺装置的设备、建筑物、构筑物平面布置的防火间距应满足表5.1.10的要求,符合安全生产和环境保护要求;

(3)应考虑管道安装经济合理和整齐美观,节省用地和减少能耗,便于施工、操作和维修;

(4)应满足全厂总体规划的要求;装置主管廊和设备的布置应根据装置在工厂总平面图上的位置以及有关装置、罐区、系统管廊、道路等的相对位置确定,并与相邻装置的布置相协调;

(5)根据全年最小频率风向条件确定设备、设施与建筑物的相对位置;

(6)设备应按工艺流程顺序和同类设备适当集中相结合的原则进行布置。在管廊两侧按流程顺序布置设备、减少占地面积、节省投资。处理腐蚀性、有毒、粘稠物料的设备宜按物性分别紧凑布置;

(7)设备、建筑物、构筑物应按生产过程的特点和火灾危险性类别分区布置。为防止结焦、堵塞、控制温降、压降,避免发生副反应等有工艺要求的相关设备,可靠近布置;

(8)设备基础标高和地下受液容器的位置及标高,应结合装置的坚向布置设计确定;

(9)在确定设备和构筑物的位置时,应使其地下部分的基础不超出装置边界线;

(10)输送介质对距离。角度、高差等有特殊要求的管道布置,应在设备布置设计时统筹规划。

2?????????装置中主管廊宽度、跨度和高度的确定应考虑哪些因素?

答:(l)管廊的宽度:

l)管廊的宽度主要由管道的数量和管径的大小确定。并考虑一定的预留的宽度,一般主管廊管架应留有10%-20%的余量,并考虑其荷重。同时要考虑管廊下设备和通道以及管廊上空冷设备等结构的影响。如果要求敷设仪表电缆槽架和电力电缆槽架,还应考虑其所需的宽度。管廊上管道可以布置成单层或双层,必要时也可布置三层。管廊的宽度一般不宜大于10m;

2)管廊上布置空冷器时,支柱跨距宜与空冷器的间距尺寸相同,以使管廊立柱与空冷器支柱中心线对齐;

3)管廊下布置泵时,应考虑泵的布置及其所需操作和检修通道的宽度。如果泵的驱动机用电缆为地下敷设时,还应考虑电缆沟所需宽度。此外,还要考虑泵用冷却水管道和排水管道的干管所需宽度;

4)由于整个管廊的管道布置密度并不相同,通常在首尾段管廊的管道数量较少。因此,在必要时可以减小首尾段管廊的宽度或将双层管廊变单层管廊。

(2)管廊的跨度:

管廊的柱距和省廊的跨距是由敷设遮其上的管道因垂直荷载所产生的允许弯曲挠度决定的,通常为6-9m。如中小型装置中,小直径的管道较多时,可在两根支柱之间设置副梁使管道的跨距缩小。另外,管廊立柱的间距,宜与设备构架支柱的间距取得一致,以便管道通过。如果是混凝土管架,横梁顶宜埋放一根φ20圆钢或钢板,以减少管道与横梁间的摩擦力。

(3)管廊的高度可根据下面条件确定:

?l)横穿道路的空间。管廊在道路上空横穿时,其净空高度为:

①装置内的检修道不应小于4.5m;

②工厂道路不应小于5.0m;

③铁路不应小于5.5m;

④管廊下检修通道不应小于3m。

当管廊有桁架时要按桁架底高计算。

?2)管廊下管道的最小高度。为有效地利用管廊空间,多在管底下布置泵。考虑到泵的操作和维护,至少需要3.5m;管廊上管道与分区设备相接时,一般应比管廊的底层管道标高低或高600~1000mm。所以管廊底层管底标局最小为3.5m。管廊下布置管壳式冷换设备时,由于设备高度增加,需要增加管廊下的净空。

3)垂直相交的管廊高差。若省廊改变方向或两管廊直角相交,其高差取决于管道相互连接的最小尺寸,一般以500~750mm为宜。对于大型装置也可采用1000mm高差。

?管廊的结构尺寸。在确定省廊高度时,要考虑到管廊横梁和纵梁的结构断面和型式,务必使梁底和?架底的高度,满足上述确定管廊高度的要求。对于双层管廊,上下层间距一般为1.2~2.0m,主要决定于管廊上最大管道的直径。

至于装置之间的管廊的高度取决于管架经过地区的具体情况。如沿工厂边缘成罐区,不会影响厂区交通和扩建的地段,从经济性和检修方便考虑,可用管墩敷设,离地面高300~500mm即可满足要求。

3?????????塔的布置方式有哪几种?塔与其关联的设备的布置有什么要求?

答:(1)塔的布置方式:

1)单排布置,一般情况下较多采用单排布置,管廊的一侧有两个或两个以上的塔或立式容器时,一般中心线对齐,如二个或二个以上的塔设置联台平台时,宜中心线对齐或切线对齐;

2)单排布置,对于直径较小本体较高的塔,可以双排布置或成三角形布置,这样,可以利用平台将塔联系在一起,提高其稳定性。但对平台生根构件应采用可以滑动的导向节点,以适应不同操作温度的热胀影响;

?3)构架式布置,对直径DN≤1000mm的塔还可以布置在构架内或构架的一侧。对用构架提高其稳定性和设置平台、梯子。对于布置在构架上的分段塔,当无法使用机动吊装机具时,应在构架上设置检修吊装设施。

(2)塔与其关联设备的布置要求:

?塔与其关联设备如进料加热器、非明火加热的重沸器、塔顶冷凝冷却器、回流罐、塔底抽出泵等,宜按工艺流程顺序靠近布置,必要时可形成一个独立的操作系统,设在一个区内,这样便于操作管理。

4?????????沿管廊布置的塔和立式管器与管廊的间距如何确定?

答:沿管廊布置的塔和立式容器与管廊的间距,按下列要求确定:

(1)在塔与管廊之间布置泵时,应按泵的操作、维修和配管要求确定;

(2)塔与管廊之间不布置泵时,塔外壁与管架立柱中心线之间的距离,不宜小于3m。

5?????????塔与塔之间或塔与其他相邻设备之间的距离如何确定?

?答:塔与塔之间或塔与其他相邻设备之间的距离,除应满足管道、平台、仪表和小型设备等布置和安装的要求外,尚应满足操作、维修通道和基础布置的需耍。两塔之间的净距不宜小于2.5m。

6?????????塔和立式容器的安装高度应符合哪些要求?

答:塔和立式容器的安装高度应符合下列要求:

(1)当利用内压或流体重力将物料送往其他设备或管道时,应由其内压和被送往设备或管道的压力和高度确定;

?(2)当用泵抽戏时,应由泵的汽蚀余量和吸入管道的压力降确定设备的安装高度;

(3)带有非明火加热重佛器的塔,其安装高度,应按工艺要求的塔和重沸器之间的相互关系和操作要求确定;

(4)应满足塔底管道安装和操作所需要的最小净空,且塔的基础面高出地面不应小于200mm。

7?????????????换热设备的布置一般要求是什么?

答:(1)与分馏塔关联的管壳式换热设备,如塔底重沸器,塔顶冷凝冷却器等。宜接工艺流程顺序布置在分馏塔的附近;

(2)两种物料进行热交换的换热器,宜布置在两种物料进出口相连的管道最近的位置;

(3)一种物料与几种不同物料进行换热的管壳式换热器,应成组布置;

(4)用水或冷剂冷却几组不同物料的冷却器,宜成组布置;

(5)成组布置的换热设备,宜取支座基础中心线对齐,当支座间距不相同时,宜取一端支座基础中心线对齐。为了管道连接方便,地面上布置的换热器也可采用管程进出口管嘴中心线对齐;

(6)换热设备应尽可能布置在地面上,但是换热设备数量较多可布置在构架上:

l)浮头式换热器在地面上布置时,应满足下列要求:

①浮头和管箱的两侧应有宽度不小于0.6m的空地,浮头端前方宜有宽度不小于1.2m的空地;

②管箱前方从管箱端算起应留有比管束长度至少长1.5m的空地。

2)浮头式换热器在构架上布置时,应满足下列要求:

①浮头端前方平台净空不宜小于0.8m;

②管箱端前方平台净空不宜小于1mn,平台采用可拆卸式栏杆,并应考虑管束抽出区所需的空间;

③构架高度应能满足换热器的管箱和浮头的头盖吊装需要。

(7)为了节约占地或工艺操作方便可以将两台换热设备重叠在一起布置。但对于两相流介质或壳体直径大于或等于1.2m的换热器不宜重叠布置;

(8)换热器之间、换热器与其他设备之间的净距不宜小于0.7m;

(9)?重质油品或污染环境的物料的换热设备不宜布置在构架上;

(10)操作温度高于物料自燃点的换热器的上方,如无楼板或平台隔开,不应布置其他设备。

8?????????????重沸器的布置一般要求是什么?

答:(l)明火加热的重沸器与塔的间距,应按防火规范中加热炉与塔的间距要求布置;

(2)用蒸汽或热载体加热的卧式重沸器应靠近塔布置,并与塔维持一定高差(由工艺设计确定),二者之间的距离应满足管道布置要求,重沸器抽管束的一端应有检修场地和通道;

(3)立式重沸器宜用塔作支撑布置在塔侧,并与塔维持一定高差(由工艺设计确定)。其上方应留有足够的检修空间;

(4)一座塔需要多台并联的立式重沸器时,重沸器的位置和安装高度,除保证工艺要求外,尚应满足进出口集合管的布置要求并便于操作和检修。

9?????????????空冷器的布置一般要求是什么?

答:(l)空气冷却器(以下简称空冷器)宜布置在装置全年最小频率风向的下风侧;

(2)空冷器应布置在主管廊的上方、构架的顶层或塔顶;

(3)空冷器不应布置在操作温度等于或高于物料自燃点和输送、储存液化烃设备的上方;否则应采用非燃烧材料的隔板隔离保护;

(4)多组空冷器布置在一起时,应布置形式一致,宜采用成列式布置;应避免一部分成列式布置而另一部分成排布置;

(5)斜顶式空冷器不宜把通风面对着夏季的主导风向。斜顶式空冷器宜成列布置,如成排布置时,两排中间应有不小于3m的空间;

(6)并排布置的两台增湿空冷器或干湿联合空冷器的构架立柱之间的距离,不应小于3m;

(7)空冷器管束两端管箱和传动机械处应设置平台;

(8)布置空冷器的构架或主管廊的一侧地面上应留有必要的检修场地和通道。

10????????空冷器的布置如何避免自身的或相互间的热风循环?

答:(1)同类型空冷器布置在同一高度;

(2)相邻空冷器靠紧布置;

(3)成组的干式鼓风式空冷器与引风式空冷器分开布置,引风式空冷器应布置在鼓风式空冷器的常年最小频率风向的下风侧;

(4)引风式空冷器与鼓风式空冷器布置在一起时,应将鼓风式空冷器管束提高。

11????????加热炉的布置一般要求是什么?

答:加热炉的布置应符合下列要求:

(1)明火加热炉宜集中布置在装置的边缘井靠近消防通道,且应于可燃气体、液化烃、甲B类液体设备的全年最小频率风向的下风侧;

(2)加热炉与其他明火设备应布置在一起;

(3)几座加热炉可按炉子中心线对齐成排布置。两座加热炉净距不宜小于3m;

(4)当采用机动维修机具吊装加热炉炉管时,应有机动维修机具通行的通道和检修场地。对于带有水平炉管的加热炉,在抽出炉管的一侧,检修场地的长度不应小于炉管长度加2m;

(5)加热炉外壁与检修道路边缘的间距不应小于3m;

(6)对于设有蒸汽发生器的加热炉,汽包宜设在加热炉顶部或邻近的构架上;

(7)加热炉与其附属的燃料气分液罐、燃料气加热器的间距,不应小于6m;

(8)当加热炉有空气预热器、鼓风机、引风机等辅助设备时,辅助设备的布置应不妨碍其本身和加热炉的检修;

(9)加热炉与露天布置的液化烃设备间的防火间距不应小于22.5m,当设备之间设置非燃烧材料的实体墙时,其间距可减少,但不得小于15m。实体墙的高度不宜小于3m,距加热炉不宜大于5m,并应能防止可燃气体窜入炉体;

当液化烃设备的厂房或甲类气体压缩机房朝向加热炉一面为封闭墙时,加热炉与厂房的间距可减少,但不得小于15m。

12????????立式容器布置的方式有哪些要求?

答:立式容器的外形与塔类似,只是内部结构没有塔的内部结构复杂,立式容器的布置方式和安装高度等可参考塔的布置要求,另外尚应考虑以下要求:

(1)为了操作方便,立式容器可以安装在地面、楼板或平台上,也可以穿越楼板或平台,用支耳支撑在楼板或平台上;

(2)立式容器穿越楼板或平台安装时,应尽可能避免容器上的液面指示、控制仪表也穿越楼板或平台;

(3)立式容器为了防止粘稠物料的凝固或固体物料的沉降,其内部带有大负荷的搅拌器时,为了避免振动影响,应尽可能从地面设置支承结构;

(4)对于顶部开口的立式容器,需要人工加料时,加料点的高度不宜高出楼板或平台1m,,如高出lm时,应考虑设加料平台或台阶。

13????????卧式容器的布置和安装高度有哪些要求?

答:(l)卧式容器宜成组布置。成组布置卧式容器宜按支座基础中心线对齐或按封头切线对齐。卧式容器之间的净空可按0.7m考虑。

(2)在工艺设计中确定卧式容器尺寸时,尽可能选用相同长度不同直径的容器,以利于设备布置。

(3)确定卧式容器的安装高度时,除应满足物料重力流或泵吸入高度等要求外,尚应满足下列要求:

1)容器下有集液包时,应有集液包的操作和检测仪表所需的足够空间;

2)容器下方需设操作通道时,容器底部配管与地面净空不应小于2.2m;

3)不同直径的卧式容器成组布置在地面或同一层楼板或平台上时,直径较小的卧式容器中心线标高可适当提高,使与直径较大的卧式容器筒体项面标高一致,以便于设置联合平台。

(4)卧式容器在地坑内布置时,应妥善处理坑内的积水和有毒、可燃易爆介质的积聚。坑内尺寸应满足容器的操作和检修要求。对多雨地区可考虑在地坑上部设置雨棚。

(5)卧式容器的平台的设置要考虑人孔和液面计等操作。顶部平台标高宜比顶部管嘴法兰面低150mm。当液面计上部接口高度距地面或操作平台超过3m时,液面计应装在直梯附近。对于集中布置的卧式容器可设联合平台。

14????????泵的布置方式有哪几种?其布置有何具体要求?

答:(1)泵的布置方式有三种:露天布置、半露天布置和室内布置:

1)露天布置露天布置的泵,通常集中布置在管廊的下方惑侧面,也可分散布置在被抽吸设备的附近。其优点是通风良好,操作和检修方便;

2)半露天布置半露天布置的泵适用于多雨地区,一般在管廊下方布置泵,在上方管道上部设雨棚。或将泵布置在构架的下层地面上,以构架平台作为雨棚。这些泵可根据与泵有关设计布置要求,将泵布置成单排、双排或多排;

3)室内布置在寒冷或多风沙地区可将泵布置在室内。如果工艺过程要求设备布置在室内时,其所属的泵也应在室内布置。

(2)泵的布置具体要求如下:

l)成排布置的泵应按防火要求、操作条件和物料特性分组布置;泵露天、半露天布置时;操作温度等于或高于自燃点的可燃液体泵宜集中布置;与操作温度低于自燃点的可燃液体泵之间应有不小于4.5m的防火间距;与液体烃泵之间应有不小于7.5m的防火间距;

2)泵成排布置时,宜将泵端出。人口中心线对齐,或将泵端基础边线对齐;

3)泵双排布置时,宜将两排泵的动力端相对,在中间留出检修通道;

4)泵布置在主管廊下方或外侧时,泵区通道的最小净宽为2m,最小净高为3m,泵端前面操作通道的宽度,不应小于1m;

5)泵布置在管廊下方或外侧时,不论是单排或双排,泵和驱动机的中心线宜与管廊走向垂直;

6)泵布置在室内时,两排泵净距不应小于2m。泵端或泵侧与墙之间的净距应满足操作、检修要求且不宜小于lm;

7)除安装在联合基础上的小型泵外,两台泵之间的净距不宜小于0.7m;

8)泵的基础面宜高出地面200mm。最小不得小于100mm;在泵吸入口前安装过滤器时,泵基础高度应考虑过滤器能方便清洗和拆装;

9)立式泵布置在主管廊下方或构架下方时,其上方应留出泵体安装和检修所需的空间;

10)输送极度危害物质(如丙烯?氢氰酸等)的泵房与其他泵房应分隔设置;

11)消防水泵房应设双动力源;

12)公用备用泵宜布置在相应泵的中间位置;

13)泵的布置应考虑管道柔性设计要求。

15????????压缩机的布置一般要求是什么?

答:(1)压缩机组及其附属设备的布置,应满足制造厂的要求;

(2)压缩机宜布置在被抽吸的设备附近,其附属设备宜靠近机组布置;

(3)可燃气体压缩机的布置应符合下列要求:

1)与明火设备、非防爆的电气设备的间距,应符合现行国家标准《爆炸和火灾危险环境电力装置设计规范》GB50028和《石油化工企业设计防火规范》GB50160的规定;

2)宜露天布置或半敞开布置。在寒冷或多风沙地区可布置在厂房内;

3)单机驱动功率等于或大于150kw的甲类气体压缩机厂房,不宜与其他甲、乙、丙类房间共用一幢建筑物;压缩机的上方,不得布置甲、乙、丙类液体设备,但自用的高位润滑油箱不受此限。

(4)单层布置的压缩机,当基础较高时,宜按需要设置操作平台;当附属设备较多时,宜两层布置。

16????????压缩机的安装高度应符合什么要求?

答:压缩机的安装高度,应根据其结构特点确定。进出口都在底部的压缩机的安装高度,应符合下列要求:

(l)进出口连接管道与地面的净空要求;

(2)进出口连接管道与管廊上管道的连接高度要求;

(3)吸入管道上过滤器的安装高度与尺寸的要求;

(4)为了减少振动应降低往复式压缩机的安装高度。

17????????吊车的选用应符合什么要求?

答:(1)压缩机的最大检修部件重量超过1.0t时,应设吊车:

1)起重量小于1.0t,宜选用移动式三角架,配电动葫芦或手拉葫芦;

2)起重量1.0~3.0t,宜选用手动梁式吊车;

3)起重量大于3.0~10.0t,宜选用手动桥式吊车;

4)起重量大于10.0t,宜选用电动桥式吊车。

(2)按压缩机台数和用途选用吊车:

l)压缩机露天布置,可不设固定吊车;

2)压缩机布置在单层厂房内数量超过4台或虽然数量少于4台,但基础在2m以上,宜选用手动桥式吊车;

3)压缩机数量超过4台或检修次数频繁、吊运行程较长时,宜选用电动桥式吊车。

18????????承重钢构架、支架、裙座、管架,覆盖耐火层有哪些要求?

答:《石油化工企业设计防火规范》GB50160对承重钢构架、支架、裙座、管架,覆盖耐火层要求、覆盖耐火层的部位、耐火极限要求如下:

(l)下列承重钢构架、支架、裙座、管架,应覆盖耐火层:

l)单个容积等于或大于5m3的甲、乙A类液体设备的承重钢构架、支架、裙座;

2)介质温度等于或高于自燃点的单个容积等于或大于5m3的乙B、丙类液体设备承重钢构架、支架、裙座;

3)加热炉的钢支架;

4)在爆炸危险区范围内的主管廊的钢管架;

5)在爆炸危险区范围内的高径比等于或大于8,且总重量等于或大于25t的非可燃介质设备的承重钢构架、支架和裙座。

(2)承重钢构架、支架、裙座、管架的下列部位,应覆盖耐火层:

设备承重钢构架:单层构架的梁、柱;多层构架的楼板为透空的算子板时,地面以上10m范围的梁、柱;多层构架的楼板为封闭楼板时,该层楼板面以上的梁、柱;

l)设备承重钢支架或加热炉钢支架:全部梁、柱;

2)钢裙座外侧未保温部分及直径大于1.2m的裙座内侧;

3)钢管架:底层主管廊的梁、柱,且不宜低于4.5m;上部设有空气冷却器的管架,其全部梁柱及斜撑均应覆盖耐火层。

(3)涂有耐火层的构件,其耐火极限不应低于1.5h。当耐火层选用防火涂料时,应采用厚型无机并能适用于烃类火灾的防火涂料。

19????????装置的控制室、变配电室、化验室的布置应符合哪些防火规定?

答:(1)控制室、变配电室宜设在建筑物的底层,若生产需要或受其他条件限制时,可将控制室、变配电室布置在第二层或更高层;

(2)在可能散发比空气重的可燃气体的装置内,控制室、变配电室、化验室的室内地面,应至少比室外地坪高0.6m;

(3)控制室朝向具有火灾危险性的设备侧的外墙,应为无门窗、洞口的非燃烧材料实体墙;

(4)控制室或化验室的室内,不得安装可燃气体、液化烃、可燃液体的在线分析一次仪表。当上述仪表安装在控制室、化验室的相邻房间时,中间隔墙应为防火墙。

20????????一般的多层辅助厂房跨度、柱距、进深、层高和开间为多少?

答:建筑物的跨距、柱距、层高等除有特殊要求者外,一般应按照建筑统一模数设计。常用模数如下:

(1)跨度:6.0,7.5,9.0,10.5,12.0,15.0,18.0(m);

(2)柱距:4.0,6.0,9.0,12.0(m);钢筋混凝土结构厂房柱距多用6m;

(3)进深:4.2,4.8,5.4,6.0,6.6,7.2(m);

(4)居高:2.4+0.3的倍数(m);

(5)开间:(2.7),3.0,3.3,3.6,3.9(m)。

21????????在什么情况下需设围堰?围堰设计应符合什么要求?

答:(1)在操作或检修过程中有可能被油品、腐蚀性介质或有毒物料污染的区域应设围堰;处理腐蚀性介质的设备区尚应铺设防腐蚀地面。

(2)围堰应符合下列要求:

l)围堰应比堰区地面的高出150-200mm;

2)围堰内应有排水设施;

3)围堰内地面应坡向排水设施,坡度不宜小于3‰。

22????????生产装置的通道设置应符合哪些要求?装置内通道的最小宽度和最小净高是多少?

答:进行设备布置时,应根据施工、维护、操作和消防的需要,综合考虑设置必要的通道和场地。在装置内部,应用道路将装置分隔成占地面积不大于10000m2的设备、建筑物区。当合成纤维装置的酯化聚合、抽丝与后加工厂房的占地面积大于10000m2时,应在其两侧设置通道。装置内主要车行通道,应与工厂道路衔接。

(l)装置消防通道的设置应符合下列要求:

l)当装置宽度大于60m时,应在装置内设贯通式消防通道;

2)装置宽度小于或等于60m、且装置外两侧有消防通道时,可不设贯通式消防通道。装置内的不贯通式道路应设有回车场地。

3)道路的宽度不应小于4m,道路路肩上管架与路面边缘净距不应小于lm,路面内线转弯半径不宜小于7m,路面上的净空高度不应小于4.5m。

(2)检修通道应满足机动检修用机具对道路的宽度、转弯半径和承受荷载的要求、并能通向设备检修的吊装孔。

(3)装置内主要车行通道、消防通道、检修通道应合并设置。

(4)操作通道,应根据生产操作、巡回检查、小型维修等的频繁程度和操作点的分布决定。

(5)装置内通道的最小宽度和最小净高要求如表5.1.47。

装置内通道的最小宽度和最小净高

通道名称 最小宽度/m 最小净高/m 通道名称 最小宽度/m 最小净高/m 消防通道 4.0① 4.5① 管廊下泵区检修通道 2.0(3.0) 3.0(3.3) 主要车行通道 4.0(6.0)② 4.5(5.0)② 操作通道 0.8 2.2 次要车行通道 3.0(3.5) 3.0(4.5) ? ? ? 注:①对于可能有大型通行机具通过的装置,主要车行通道的净宽和净高要求如表5.1.47。

②表中括弧内的数据为化工行业标准的规定。

23????????设备的构架或平台的安全疏散通道,应符合哪些防火规定?

答:(1)可燃气体、液化烃、可燃液体的塔区平台、设备的构架平台或其他操作平台,应设置不少于两个通往地面的梯子,作为安全疏散通道。但长度不大干8m的甲类气体或甲、乙A类液体设备的平台或长度不大于15m的乙B、丙类液体设备的平台,可只设一个梯子;

(2)相邻的构架、平台宜用定桥连通,与相邻平台连通的走桥可作为一个安全疏散通道;

(3)相邻安全疏散通道之间的距离,不应大于50m。

24????????装置布置和发展趋势归结为“四个化”是指什么?

答:装置布置和发展趋势归结为“四个化”即:露天化、流程化、集中化和模块化。

(1)露天化:从近几年实际设计中可以看出,除大型压缩机布置在半敞开的厂房内以外、其他设备给大多数布置在滚天。其优点是节约占地,减少建筑物,有利于防爆,便于消防;

(2)流程化:以管廊为纽带按工艺流程顺序将紧凑设备布置在管廊的上下和两侧;

(3)集中化:将几个装置合理地集中在一个大型街区内组成联合装置,按防火设计规范用通道将各装置分开,此通道可作为两侧装置设备的检修通道,也可作为消防通道。设中央控制室,且朝着设备的墙不开门窗,用电子计算机控制操作;

(4)模块化:装置的工艺单元可采用模块布置。如泵、汽轮机、压缩机及其辅助设备采用模块布置,配管也可以模块布置;又如加热炉的燃料油、燃料气管道系统,装置内软管站管道也可以模块布置。甚至整个装置采用模块化设计,用于不同地区仅作局部修改即可重复利用。





25????????管道布置设计的要求有哪些?

答:(1)管道布置设计的一般要求有;

1)管道布置设计应符合工艺管道及仪表流程图的要求;

2)管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维修等方面的要求,并力求整齐美观;

3)在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调;

4)厂区内的全厂性管道的敷设,应与厂区内的装置(单元)、道路、建筑物。构筑物等协调,避免管道包围装置(单元),减少管道与铁路、道路的交叉;

5)管道应架空或地上缴设;如确有需要,可埋地或敷设在管沟内;

6)管道宜集中成排布置。地上的管道应敷设在管架或管墩上;

7)在管架、管墩上布置管道时,宜使管架或管墩所受的垂直荷载、水平荷载均衡;

8)全厂性管架或管墩上(包括穿越涵洞)应留有1O%-3O%的裕量,并考虑其荷重。装置主管廊管架宜留有10%-20%的裕量,并考虑其荷重;

9)输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布置,应符合设备布置设计的要求;

10)管道布置不应妨碍设备、机泵及其内部构件的安装、检修和消防车辆的通行;

11)管道布置应使管道系统具有必要的柔性。在保证管道柔性及管道对设备、机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少;

12).应在管道规划的同时考虑其支承点设置。宜利用管道的自然形状达到自行补偿;

13)管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免时应根据操作、检修要求设置放空、放净。管道布置应减少“盲肠”;

14)气液两相流的管道由一路分为两路或多路时,管道布置应考虑对称性或满足管道及仪表流程图的要求。

(2)管道除与阀门。仪表、设备等需要用法兰或螺纹连接者外,应采用焊接连接。

下列惰况应考虑法兰、螺纹或其他可拆卸连接:

l)因检修、清洗、吹扫需拆卸的场合;

2)衬里管道或夹套管道;

3)管道由两段异种材料组成且不宜用焊接连接者;

4)焊缝现场热处理有困难的管道连接点;

5)公称直径小于或等于100mm的镀锌管道;

6)设置盲板或“8”字盲板的位置。

(3)气体支管宜从主管的顶部接出。

(4)有毒介质管道应采用焊接连接,除有特殊需要外不得采用法兰或螺纹连接。有毒介质管道应有明显标志以区别于其他管道,有毒介质管道不应埋地撤设。

(5)布置固体物料或含固体物料的管道时,应使管道尽可能短。少拐弯和不出现死角:

l)固体物料支管与主管的连接应顺介质流向斜接,夹角不宜大于45°;

2)固体物料管道上弯管的弯曲半径不应小于管道公称直径的6倍;

3)含有大量固体物料的浆液管道和高粘度液体管道应有坡度。

(6)需要热补偿的管道,应从管道的起点至终点则”整个管系进行分析以确定合理的热补偿方案。

(7)敷设在管廊上要求有坡度的管道,可采用调整管托高度。在管托上加型钢或钢板垫枕的办法来实现。对于放空气体总管(或去火炬总管)宜布置在管廊立柱的项部,以便于调整标高。

(8)布置与转动机械设备连接的管道时,应使管系具有足够的柔性,以满足设备管口的允许受力要求。必要时可采用以下措施:

l)改变管道走向,增强自然补偿能力;

2)选用弹簧支吊架;

3)选用金属波纹管补偿器;

4)在适当位置设置限位支架。

(9)布置与往复式压缩机相连的管道时,应使管系的机械振动固有频率和管道的气柱固有频率避开机器的激振频率.必要时可采用以下措施:

1)增设防振支架;

2)适当扩大管径;

3)增设脉动衰减器或孔板;

4)合理设置缓冲器,避开共振管长,尽可能减少弯头。

(10)不应在振动管道上弯矩大的部位设置分支管。

(11)在易产生振动的管道(如往复式压缩机、往复泵的出口管道等)的转弯处,应采用弯曲半径不小于1.5倍公称直径的弯头。分支管直顺介质流向外接。

(12)从有可能发生振动的管道上接出公称直径小于或等于40mm的支管时,不论支管上有无阀门,连接处均应采取加强措施。

(13)自流的水平管道应有不小于3‰的顺介质流向坡度。

(14)管道穿过建筑物的楼板、屋顶或墙面时,应加套管,套管与管道门的空隙应密封。套管的直径应大于管道隔热层的外径。并不得影响管道的热位移。管道上的焊缝不应在套管内,并距离套管端部不应小于150mm。套管应高出楼板、屋顶面50mm。管道穿过屋顶时应设防雨罩。管道不应穿过防火墙或防爆墙。

(15)布置腐蚀性介质、有毒介质和高压管道时,应避免由于法兰、螺纹和填料密封等泄漏而造成对人身和设备的危害。易泄漏部位应避免位于人行通道或机泵上方,否则应设安全防护。

(16)有隔热层的管道,在管墩、管架处应设管托。无隔热层的管道,如无要求,可不设管托。当隔热层厚度小于或等于80mm时,选用高100mm的管托;隔热层厚度大于80mm时,选用高150mm的管托;隔热层厚度大于130mm时,选用高200mm的管托;保冷管道应选用保冷管托。

(l7)厂区地形高差较大时,全厂性管道敷设应与地形高差保持一致。在适当位置调整管廊标高。管道的最小坡度宜为2‰。管道变坡点宜设在转弯处或固定点附近。

(18)对于跨越、穿越厂区内铁路和道路的管道,在其跨越段或穿越段上不得装设阀门、

金属波纹管补偿器和法兰、螺纹接头等管道组成件。

(19)有热位移的埋地管道,在管道弧度允许的条件下可设挡墩,否则应采取热补偿措施。

(20)管道布置时管道焊缝的设置,应符合下列要求:

1)管道对接焊口的中心与弯管起弯点的距离不应小于管子外径:且不小于100mm;

2)管道上两相邻对接焊口的中心间距:

a.对于公称直径小于150mrn的管道,不应小于外径,且不得小于50mm;

b.对于公称直径等于或大于150m的管道,不应小于150mm;

3)环焊缝距支、吊架边缘净距不应小于50mm;需要热处理的焊缝距支、吊架边缘的最小净距,应大于焊缝宽度的5倍,且不得小于100mm。

26????????可燃液体、可燃气体、液化烃的管道设计的原则是什么?

答:可燃液体,可燃气体、液化烃的管道设计的原则是:

(l)管道不得穿越与其无关的建筑物;

(2)管道应架空或沿地敷设;

(3)必须采用管沟敷设时,应采取防止气体或液体在管沟内积聚的措施,并在进、出装置及厂房处密封隔断;

(4)管沟内的污水,应经水封并排入生产污水管道;

(5)取样管道不应引入化验室;

(6)金属管道除特殊需用法兰连接外,应采用焊接连接。

27????????哪些介质管道须静电接地?管网的接地连接点和接地电阻值有何要求?

答:可燃气体、液化烃、可燃液体、可燃固体的管道在下列部位应设静电接地设施:

(1)装置区中各个相对独立的建(构)筑物内的管道,可通过与工艺设备金属外壳的连接(法兰连接),进行静电接地;

(2)管网内的泵、过滤器、缓冲器等处应设置接地连接点;

(3)管网在进出装置区处、不同爆炸危险环境的边界、管道分岔处的管道应进行接地,对于长距离的无分支管道,应每隔80-100m与接地体可靠连接;

(4)对金属管道中间的非导体管段(如聚氯乙烯管),除需做屏蔽保护外,两端的金属管应分别与接地干线相接,或用6mrn多股铜芯绝缘电线跨接后接地;

(5)非导体管段上的金属件应接地。

每组专设的静电接地体的接地电阻值,宜小于100?;在山区土壤电阻率较高的场所,接地电阻值应小于1000?。

28????????管道敷设的方式有哪几类?其优、缺点是什么?

答:管道敷设方式有地面以上和地面以下两大类:

(l)地而以上通称架空敷设。是工业生产装置管道敷设的主要方式。具有便于施工、操作、检查、维修及经济等优点;

(2)地下敷设

1)埋地敷设:其优点是利用地下的空间,使地面以上空间较为简洁,并不需支承措施;

其缺点是管道腐蚀性较强,检查和维修困难,在车行道处有时需特别处理以承受大的载荷,

低点排液不便及易凝油品凝固在管内时处理困难,带隔热层的管道很难保持其良好的隔热功能等,故只有不可能架空敷设时,才予以采用;

2)管沟敷设;可充分利用地下空间,并提供了较方便的检查维修条件;还可敷设有隔热层的高温、易凝介质或腐蚀性介质的管道;其缺点是费用高,占地面积大,需设排水点,易积聚或单入油气增加不安全因素,易积聚污物清理困难等。因此在装置内只在必要时,才采用管沟敷设。

29????????符合哪些条件的管道.允许将管道直接埋地布置?

答:(1)输送介质无腐蚀性、无毒和无爆炸危险的液体、气体管道,由于某种原因无法

在地上敷设的;

(2)与地下储槽或地下泵房有关的工艺介质管道;

(3)冷却水及消防水或泡沫消防管道;

(4)操作温度小于150℃的热力管道。

30????????埋地敷设管道的埋设深度有哪些要求?

答:埋地敷设管道的埋设深度应以管道不受损坏为原则,并应考虑最大冻土深度和地下水位等影响。管顶距地面不宜小于0.5m;在室内或室外有混凝土地面的区域,管项距地面不宜小于0.3m。通过机械车辆的通道下不宜小于0.7m或采用套管保护。

31????????管廊上管道布置的原则是什么?

答:(1)大直径管道应靠近管廊柱子布置;

(2)小直径、气体管道、公用工程管道直布置在省廊中间;

(3)工艺管道宜布置在与省廊相连接的设备一侧;工艺管道视其两端所连接的设备管口标高可以布置在上层或下层;

(4)需设置“Ⅱ”型补偿器的高温管道,应布置在靠近柱子处,且‘Ⅱ”型补偿器宜集中设置;

(5)低温介质管道和液化烃管道,不应靠近热管道布置;也不要布置在热管道的正上方;

(6)对于双层管廊,气体管道、热管道、公用工程管道、泄压总管、火炬干管、仪表和电气电缆糟架等宜布置在上层;一般工艺管道、腐蚀性介质管道、低温管道等直布置在下层;

(7)管廊上管道设计时,应留10%-20%裕量。

32????????治塔管道布置设计时应如何考虑?

答:沿塔管道的布置设计应注意如下几个方面:

(1)应满足工艺管道及仪表流程图的要求;

(2)管道布置应从塔顶部到塔底部自上而下进行规划,并且应首先考虑塔顶管道和大直径的管道的位置和自流管道的走向,再布置压力管道和一般管道,最后考虑塔底管道和小直径管道;

(3)应考虑方便操作、维修和安全可靠,经济合理;

(4)每一条管道按照它的起止点都应尽可能短,但必须满足管道柔性的要求;

(5)每一条管道应尽量沿塔体布置,并且注意有一个“好的外观”;

1)有两种惰况可考虑:一是每一条管道分别布置;二是按管道成组布置(这种方式加管道的集中荷载较大时,应取得设备设计人员的同意);

2)在管道侧沿塔外壁呈同心圆布置,或沿塔外壁呈切线布置。

33????????塔顶管道设计的要点是什么?

答:(1)塔顶管道一般有塔顶油气、放空和安全阀出口管道。塔顶放空管道一般安装在

塔顶油气管道最高处的水平管段的顶部,并应符合防火规范的要求;

(2)塔顶油气管道内的介质一般为气相,管径较大,管道尽可能短,要“步步低”,不宜出现袋形管,且具有一定的柔性;

(3)每一根沿塔管道,需在上部设承重支架,并在适当位置设导向支架,以免管嘴受力过大;

(4)分馏塔顶油气管道一般不隔热,只防烫;如该管道至多台冷换设备,为避免偏流,应对称布置;

(5)塔顶为两级冷凝时,其管道布置应使冷凝液逐级自流,油气总管与冷凝路入口支管应对称布置,使流量均匀;

(6)当塔顶压力用热旁路控制时,热套路管应保温,尽最短,其调节阀应安装在回流罐”上部,且管道不得出现“袋形”,以避免积液;

(7)减压塔顶油气管道与塔开口直接焊接而不采用法兰连接,以减少泄漏。

34????????塔体侧面管道设计有何具体要求?

答:(l)塔体侧面管道一般有回流、进料、侧线抽出、汽提蒸汽、重沸器入口和返回管

道等,为使阀门关闭后无积液,上述管道上的阀门宜直接与塔体管口直接相接,进(出)料管道在同一角度有两个以上的进(出)料开口时,管道应考虑一定的柔性;

(2)分馏塔侧线到汽提塔的管道上如有调节阀其安装位置应靠近汽提塔.以保证调节同前有一段液住.其液柱的高度应满足工艺的要求。

35????????塔底管道设计有何特点?

答:(1)塔底的操作温度一般较高,因此在布置塔底管道时,其柔性应满足有关标准或

规范的要求。尤其是塔底抽出管道和泵相连时,管道应短且少拐弯,又需有足够的柔性以减

少泵嘴受力。塔底抽出线应引至塔裙或底座外,塔裙内严禁设置法兰成仪表接头等管件。塔

底到塔底泵的抽出管道在水平管段上不得有“袋形”,应是“步步低”,以免塔底泵产生汽蚀现象,抽出管上的隔断阀应尽最靠近塔体,并便于操作;

(2)除非是辅助重沸器,或者是两个以上并联的重沸器同时操作,而且要求在较宽的范围内调节其热负荷,塔底到重沸器的管道一般不宜设阀门。塔底釜式重佛器带有离心泵时,

重沸器的标高应满足离心泵所需要的有效汽蚀余量,同时使塔底液面与重沸器液面的高差所形成的静压头足以克服降液管、重沸器和升气管的压力损失。因此,管道的布置应在满足柔性要求的同时,管道应短,弯头应少。

36????????塔上人孔的布置应符合哪些要求?

答:(1)塔的人孔应设在塔的操作区内,进、出塔比较方便、安全、合理的地方,并宜

设在同一方位上。

(2)设置人孔的部位必须注意塔的内部构件,一般应设在塔板上方的鼓泡区,不得设在塔的降液管或受液槽区域内;

(3)塔体上的人孔(或手孔),一般每3-8层塔板布置一个;

(4)人孔中心距平台面的高度一般为600mm至1000mm之间,最适宜高度为750mm;

(5)一座塔上的人孔宜布置在同一垂直线上,使其整齐美观。

37????????塔的管口方位有何要求?

答:(1)塔的管口方位应满足塔内件工作原理及结构的要求,设计时应注意设备内件整体结构与管口的相对方位;塔顶气相开口布置在塔顶头盖中部;塔的回流开口,一般布置在塔板上方的管道侧;气相进料开口在塔板上方,与降液管平行;气液混相进料开口在塔板上方,并设分配管;

汽提蒸汽开口在汽提塔板下方,并加气体分配管。侧线产品抽出口在降液管下方的公弧范围内,宜设抽出斗,对于中间降液管的双溢流塔板,其抽出口可布置在该处任意角度,设抽出斗;塔底抽出口设在塔底头盖的中部,并设防涡流板,抽出口应延伸到塔的裙座外;

(2)对于有塔板的塔,人孔宜布置在与塔板溢流堰平行的塔直径上,条件不允许时可以不平行,但人孔与溢流堰在水平方向的净距应不大于50mm;

(3)人孔吊装的方位,与梯子的设置应统一布置,在事故时,人盖顺利关闭的方向与人疏散的方向应一致;

(4)液位计接口可通过根部阀与液位计直接连接,也可通过根部阀与液位计连通管相接。不得把液位计接口布置在进料口的对面60°角的范围内,除非进料口有内挡板保护。与塔直连的外浮筒式液位控制接管应加挡板。液位计、液位控制浮筒、报警等装置常位于塔平台内或局部平台端部,以便于维修;

(5)压力计接口应布置在塔的气相区内,使压力计读数不受液位压头的影响;

(6)取样口和测温口的布置,气相取样口和测温口应避开塔板降液槽的气相区,液相取样口和测温口应设在降液管区域的塔板持液层内;对于易结晶的液相取样管应被向塔板;

(7)塔顶部吊柱的定位应使旋转时可达到平台外起吊点上方,以及平台所有人孔的位置。38????????设备管口方位图除表示管口外,还表示什么方位?

答:除表示工艺及公用介质管口外,还应该表示:

(1)仪表接管的方位,包括温度、压力、液位;

(2)人孔、手孔和吊柱的方位,裙座排气孔的方位;

(3)设备地脚螺栓孔的方位或支耳的方位;

(4)吊耳、接地板和铭牌的方位;

(5)内部爬梯、裙座底部加强支撑的方位。



39????????如何确定卧式容器支座的固定侧?

答:从该容器所需连接的管道中找出对柔性计算最重要的(难度或要求最高的)一根管

道,例如补偿量大,管径大的管道,作为决定支座型式的依据。固定侧支座位置应有利于该

管道的柔性计算。

40????????卧式容器的管口方位有什么要求?

答:(1)在设备壳体上的液体入口和出口间距应尽量远。液体入口管应尽量远离容器液

位计接口;

(2)液位计接口应布置在操作人便于观察和方便维惨的位置。有时为减少设备上的接管口,可将就地液位计、液位控制器、液位报警等测量装置安装在联箱上。波位计管口的方位,应与液位调节阀组布置在同一侧;

(3)铰链(或吊柱)连接的人孔盖,在打开时应不影响其他管口或管道等;

(4)安全阀接管口应设在容器顶部。

41????????卧式容器的管道布置的一般要求是什么?

答:容器(罐)的管道比较简单;立式容器的管道布置大体上与塔的管道布置相似,也采取沿罐壁进行设计,管道上的阀门也要求直接与开口相接;这样可避免积液。卧式容器设备布置时,一般将罐与管廊的长方向相垂直所以其管道如气体出口管道、安全阀出口管道、

液体出口管道等都朝向管廊,并与管廊上的有关;主管相连接。容器顶部开口接出的管道,

其标高宜高于与管廊上相接的主管,以便于接在主管的顶部。容器底部的液体出口管道与管

底下的泵相连接时,其管底标高应不影响人的通行。

(1)对卧式容器的液体出口与泵吸入口连接的管道,若在通道上架空配管时,最小净空高度为2200mrn;

(2)与卧式容器底部管口连接的管道,其低点排液口距地坪最小净空为150mm;

(3)安全阀的出口排入密闭管道系统时,应避免积液,并满足安全阀出口管道顺介质流向成45°向下与密闭总管顶部相接,且无“袋形”。若安全阀安装在远离容器时,要校核从容器至安全阀入口管道的压力降;

(4)储罐顶部管道的调节阀组布置在平台上;

(5)应根据设备及管道布置惰况设置平台。

42????????加热炉管道布置设计的一般要求是什么?

答:(1)加热炉管道布置随加热炉的炉型不同而异,在加热炉管道布置时,应对其进、

出料管道、燃料系统管道、吹灰气管道、灭火蒸汽管道等统一考虑;

(2)对圆筒炉进、出料总管,通常采用环形布置于炉体周围,可支承在地面或炉体上。环形总管应布置在看火门以上,以便于看火门的正常操作和维修;

(3)必要时在炉出口管道弯头。三通或变径较大之外,或者从炉顶垂直向下的底部位置,设置防震支架;

(4)如果在管道设置爆破片,其方向不得朝向操作或设备;

(5)主要调节阀组通常布置在管廊与炉体之间并注意通道要求;

(6)蒸汽、燃料油或燃料气管道上的阀门宜布置在看火门附近的垂直管道上,并满足调节和检修的要求;

(7)在寒冷地区,应根据规定对燃料油管道采用蒸汽伴热;

(8)靠近喷嘴处的管道应采用便于拆卸的接连结构,以便清扫和维修;

(9)应在经常操作的在较高位置的阀门和观察部位设置平台和梯子;

(10)燃料管道的排放点,应远高炉子至少15m,并应排入收集系统,不得直接排入下水道;

(11)与炉子连接的管道,尽量集中排列,以便于支撑,达到协调。美观的目的;

(12)对加热炉的进料管道,应保持各路流量均匀;对于全液相进料管道,一般各路都设有流量调节阀调节各路流量,否则应对称布置管道,气液两相的进出管道,必须采用对称布置,以保证各路压降相同;

(l3)环形油线应以最高温度计算热补偿量,并利用管道自然补偿来吸收其热膨胀量。

43????????对加热炉的燃料气管道布置的一般要求是什么?

答:(1)燃料气要设分配主管,使每个喷嘴的燃料气都能均匀分布;燃料气支管由分配

主管上部引出,以保证进喷嘴的燃料气不携带水或凝缩油。在燃料气分配主管末端装有DN20的排液阀,便于试运冲洗及停工扫线后排液,以及开工时取样分析管道内的氧含量,排液管上应设两道排液阀以免泄漏,该阀能在地面或平台上操作。燃料气切断总阀应设在距加热炉15m以外。

(2)在燃料气管道上设置阻火器,就可以阻止火焰蔓延,阻火器按作用原理可分为干式阻火器和安全水封两种。工业生产装置中加热炉的燃料气管上一般采用多层铜丝网的干式阻火器。阻火器应放置在靠近喷嘴的地方。管道阻火器与燃烧器距离不宜大于12m。这样,阻火器就不致于处在严重的爆炸条件下,使用寿命可以延长。

44????????管壳式和套管式换热设备的管道布置应如何考虑?

答:(l)工艺管道布置应注意冷、热物流的流向,一般冷流自下而上,热流由上而下;

(2)管道布置应方便操作,并不妨碍设备的检修;

(3)换热设备的基础标高,应满足其下部排液管距地面或平台面不小于150mm;

(4)换热设备的管道,只能出现一个高点和一个低点,避免中途出现“气袋”或“液袋”,并设高点放空,低点放净;在换热设备区域内应尽量避免管道交叉和绕行;尽量减少管道架空的层数,一般为2-3层;

(5)两台或两台以上并联的换热设备入口管道直对称布置,对气液两相流换热设备则必须对称布置,才能达到良好的传热效果;

(6)换热设备的进出口管道上测量仪表,应靠近操作通道及易于观测和检修的地方安装;

(7)与换热设备相接的易凝介质的管道或含有固体颗粒的管道副线,其切断阀应设在水平管道上,并应防止形成死角积液;

(8)在寒冷地区,室外的换热设备的上、上水管道应设置排液阀和防冻连通管。

45????????成组布置的换热设备其管道布置应如何设计?

答:(1)成组布置的换热设备区域内,可在地面或平台面上敷设管道,但不应妨碍通行和操作;

(2)当管道上无调节阀或排液管时,管底距地面净空应大于或等于150mm;

(3)调节阀组应平行于冷换设备布置;

(4)成组布置的换热设备之间管道布置的净距应大于或等于650mm;

(5)管道布置应考虑各换热设备的管箱和头盖的拆卸空间;

(6)并联多组换热设备的进出口管道应对称布置。

46????????立式重沸器的管道布置有何要求?

答:(1)管道必须有足够的柔性,以补偿在各种工况下设备和管道的热膨胀;

(2)当重沸器管口同塔的管口对接时,如荷载条件允许,则最好在塔体上设支架支承重沸器,而且支架的位置及形式应能满足塔体及管道膨胀所产生的位移及荷载要求;

(3)配管时应留出重沸管束在原地拆卸所需的空间;

(4)对壳体上带膨胀节的单程固定管板式换热器,在进行配管,柔性分析及设备的支撑设计时,应考虑该膨胀节的影响;

(5)当重沸器的长度与直径之比(L/D)大于6.0时,宜设导向支架;

(6)当重沸器的阀门和盲板离地评3m以上,应在塔上设置平台。

47????????管壳式卧式重沸器的管道布置有何要求?

答:(1)在热胀许用应力范围内,重沸器的降液管和升汽管,应尽可阻短而直、减少弯头数里,以减少压降;

(2)当重沸器有2个升汽口时,为使其管内流绿相等,升汽省应对称布置。若升汽管管径不同和布置不对称时,应尽量使这二根管段的阻力相等。否则,阻力大的升汽管的流量小会使热量分配不匀;

(3)从重沸器内抽出的液体为饱和液体,如果管道系统产生压降,液体就将开始闪蒸,产生气液两相流体流动,影响控制和测量仪表的操作和精度。因此在布置饱和液体管道时,其基本原则是使压力降最小,并在测量或控制仪表前不出现垂直上升管段;

(4)重沸器管程加热介质的进口管道上通常装有温度调节阀及其阀组,这些阀门一般布置在靠近重沸器管程进口的地面或平台面上。

48????????空冷器的管道设计有何具体要求?

答:(1)分馏塔顶至空冷器油气管道,一般不宜出现“液袋”。当空冷器进出口无阀门或为两相流时,管道必须对称布置,使各片空冷器流量均匀;

(2)空冷器的入口集合管应靠近空冷器管嘴连接,如因应力或安装需要,出口集合管可不靠近管嘴连接,集合管的截面积应大于分支管截面积之和;

(3)空冷器人口为气液两相流时,各根支管应从下面插入人口集合管内;以使集合管底的流体分配均匀;同时在集合管下方设置停工排液管道,接至空冷器出口管道上;

(4)空冷器人口管道较高;如距离较长,需在中间设置专门管架以支承管道;

(5)湿式空冷器的软化水回水系统为自流管道,因此,应注意管系的布置,并拐弯不宜过多。回水总管应有顺介质流向的坡度;

(6)空冷器的操作平台上设有半固定蒸汽吹扫接头,其阀门宜设在易接近处,并应注意蒸气接头方向,保证安全操作。

49????????泵类的管道设计一般要求是什么?

答:(l)泵的进、出口管道应设切断网,管道一定要有足够的柔性,以减少管道作用在泵管口处的应力和力矩;

(2)泵的吸入管道应满足泵的“汽蚀余量”的要求,管道应尽可能短、少拐弯不得有气袋。如难以避免,应在高点设放气阀;

(3)当泵吸入管较长时,宜设计成一定的坡度(i=5‰);泵比容器低时宜坡向泵,泵比容器高时宜坡向容器;

(4)在紧靠泵人口管道切断阀下游,应设过滤器或临时过滤器,为防止泵的流体倒流引起泵的叶轮倒转,泵出口应装有止回阀;

(5)在满足工艺要求的前提下,泵的管道。阀门手轮不得影响泵正常运行及维修检查所需空间;

(6)往复泵进、出口管道设计应考虑流体脉动的影响。

50????????泵的保护线有哪几种?其作用是什么?

答:泵的保护线有6种,其作用是为了使泵体不受损害和正常运转,根据使用条件设置泵的保护管线。

(1)暖泵线——在输送介质温度大于200℃的高温油品时,有备用泵的情况下应设置DN20~25暖泵线;

(2)小流量线——当泵的工作流量低于泵的额定流量30%时,应设置泵在最低流量下正常运转的小流量线;

(3)平衡线——对于输送常温下饱和蒸汽压高于大气压的液体或处于泡点状态的液体,为防止进泵液体产生蒸汽或有气泡进入泵内引起汽蚀应加平衡线;

(4)旁通线——用于泵的试运转或非正常操作状态下出口主阀关闭时,仍能使泵处于运转。一般在阀前后压差非常高的场合设置带有限流孔极的旁通阀;

(5)防凝线——输送在常温下凝固的高倾点或高凝固点的液体时,其备用泵和管道应设防凝线,以免备用泵和管道堵塞;

(6)安全阀线——对于电动往复泵、齿轮泵和螺轩泵等容积泵,在出口侧设安全阀线,当出口压力超过定压值时,安全阀起跳,流体返回泵人口管。

51????????离心式压缩机管道布置的一般要求是什么?

答:(l)离心式压缩机壳体有两种形式:垂直剖分型用于高压,其机前不得有管道及其他障碍物;水平剖分型用于中、低压,其机上部不得有管道和其他障碍物;

(2)进出口管道的布置在满足热补偿和允许受力条件下,应尽量减少弯头数量,以减少压降;

(3)进出口管嘴一般朝下,机壳体中心支撑,在运行中其热胀量应由管道吸收;

(4)厂房内设置的压缩机管嘴为上进上出时,在其进出管嘴管道上须设可拆卸短节,以便压缩机检修。

???????52往复式压缩机管道布置设计的一般要点是什么?

答:(1)压缩机进出口管道布置应短而直,尽量减少弯头数量,但出口管道有热胀时,应使管道具有柔性;

(2)管道布置应考虑液体自流到分液罐,当管道出现“液袋”时,应设低点排净;

(3)多台机组并排布置时,其进、出口管道上的阀门和仪表应布置在便于操作,容易接近的地方;

(4)为防止压缩机进出口管道振动,应进行必要的振动分析。管道布置应尽量低,支架敷设在地面上,且为独立基础,加大支架和管道的刚性;

(5)压缩机的介质为可燃气体时,管道低点然凝,高点放空阀门应设丝堵、管帽或法兰盖,以防泄漏,且机组周围管沟内应充沙,避免可燃气体的积聚;

(6)布置压缩机进出口管道时,应不影响检修吊车行走;

(7)压缩机的管道应布置在操作平台下,使机组周围有较宽敞的操作和检修空间。

53????????压缩机的管道氮气吹扫和置换的目的是什么?

答:压缩机检修完毕后,工艺管道及压缩机内残存有空气,当启动压缩机吸入油气或其他可燃、易爆气体时,可能产生爆炸危险,因此,应在开机前引入氮气置换。

54????????低温管道的设计包括哪些范围?

答:(1)低温管道在各行各业中均有应用,尤其在石油化工企业中应用较为普遍。碳钢管在+5℃至-19℃范围内处于延性状态,可正常使用,如果使用温度低于或等于-20℃,碳钢管就逐渐变为以脆性状态为主,使用受到一定条件的限制。所以,低于或等于-20℃的管道属于低温管道。

(2)低温管道布置主要考虑两个问题。第一是“低温脆性”,这就要求设计人员合理选择“冲击韧性”高的钢板,同时从配管设计和管系制作上防止脆断和脆裂。第二是管道的保冷结构设计和满足保冷的设计要求,它直接关系到能耗和设备管道的操作、施工、检修等。

55????????低温管道布置要求有哪些?

答:(l)低温管道的布置要考虑整个管道有足够的柔性,要充分利用管道的自然补偿。当设计温度很低而又无法自然补偿时,应设置补偿器。

(2)低温管道布置时,应避免管道振动,尤其泵、压缩机和排气管,必须防止整条管道的振动,若有机械的振源,应采取消振设施,在接近振源处的管道应设置弹性元件,如波纹补偿器等以隔断振源。

(3)在碳素钢、低合金钢的低温管道上,装有安全阀、排气管或排污阀的支管,需注意该低温液体介质排出后是否立即汽化,若气化就需要大量吸热,就要结露直至结冰,使管道温度降到很低,故此类支管在容易结冰范围内应采用奥氏体不锈钢材料,然后再使用法兰连接不同材质的支管。

(4)低温管道弯头处应力最大,所以弯头处最容易脆裂,不应焊接支吊架。

(5)低温管道上,靠近弯头或三通处,一般不允许直接焊接法兰。为了拆卸螺栓时不破坏主管道上的保冷层,需要延长一段长度(接一短管)后再焊接法兰。对接法兰中只需保证法兰一端留有装卸螺栓的间距。对于阀门组的配管应考虑能顺利卸下其中任何一个阀而不影响管道保冷结构。

(6)低温保冷管道支架,必须有防止产生“冷桥”的措施;

1)低温管道水平敷设时,一般在管道底部垫有木块或硬质隔热材料块,以免管道中冷量损失。

2)低温管道垂直敷设时,支架若生根在低温设备上时,在设备和管道上均应垫有木块或硬质隔热材料块。

56????????管道取样管的布置原则是什么?

答:(l)取样接管不宜设在有振动的设备和管道上,如泵、压缩机等,也应避免设在与振动设备直接相连接的管道上。如果难以避免,应采取减振动措施;

(2)取样管设置应满足工艺的要求,并应避免死角或“袋形”。且取样阀应布置在便于操作的地方,否则应设平台,设备或管道与取样阀之间的管段应尽量短。

(3)气体取样管引出位置:

l)从水平管上取样时,取样管应设在管道的顶部;

2)从立管上取样时,当气体自下而上流动时,取样口应从立管向上45°倾斜引出;当气体中含有固体颗粒时,取样管应伸到管中心;当气体自上而下流动时取样管应水平开设。

(4)液体取样管引出位置;

l)垂直管道上液体自下而上流动时,取样管可设在垂直管道的任意侧;

2)垂直管道上液体自上而下流动时,除非能保证液体充满取样管,取样管可设在垂直管道的任意侧,否则不宜在这样情况下设取样点;

3)水平管道:在压力输送条件下,取样管可设在管道的任意部位;当液体中含有固体颗料时,取样管宜设在水平管道的两侧;在自流的水平管道上取样时,取样管应设在管道的底部。

(5)极度危害和高度危害的有毒介质的取样,不允许就地放空取样,应采取密闭循环取样。

57????????装置内火炬总管布置有何特殊要求?

答:(1)装置内火炬总管一般布置在主管廊上层的边缘,或沿管廊柱成T形管架支承火炬总管;

(2)火炬总管应坡向装置边界线处的分液罐或全厂火炬总管,并不宜有“袋形”,否则,应采取排液措施;

(3)确定火炬总管位置时,要考虑安全阀及其排放管高于火矩总管,并不宜有“袋形”,排放管应顺介质流向45°斜接到火炬总管顶部,尽可能地减少局部阻力;

(4)当火炬总管在装置边界线处设有“8”字盲板和切断阀时,应在切断阀前(装置内侧)设DN20~40排凝管,并在根部设双道切断阀。凝液应回收,不得随意排放;

(5)火炬总管应在可能吹扫全部管道的端部设蒸汽或氮气吹扫管。当扫线介质为蒸汽时,火炬总管应设水平敷设的“п"型补偿器或波纹补偿器”。

(6)火炬总营应有防止滑落的管卡或挡铁;

(7)在火炬总管上,不得有死角,当改变管道走向时,应采用R≥1.5DN弯头。

58????????装置内火炬的设置应满足哪些要求?

答:(1)严禁排入火炬的可燃气体携带可燃液体;

(2)火炬的高度应使火焰的辐射热不致影响人身及设备的安全;

(3)火炬的顶部应设引燃灯或其他可靠的点火设施;

(4)距火炬简30m范围内,严禁可燃气体排放。

59????????管道排气、排液的目的是什么?在管道何处需设置排气或排液?

答:(1)排气的目的:

1)当泵的人口管道有“气袋”形成时,应在泵的启动之前排气;

2)装置开车时,为避免管道系统产生气阻,需在其高点排气;

3)管道系统进行水压试验、吹扫清洗时,需在管道的高点设临时排气;

4)为尽快排除管道内流体,在高点设置放空,以便借大气压力排液。

(2)排液的目的:

l)为排除管道内液体:

①水压试验后排液;

②停工检修前的排液;

③管道防冻时排液。

2)水压试验时用作流体的注入管;

3)作为管系的空气和蒸汽吹扫出口使用。

(3)下列部位应设置然气;

l)液体管道呈“气袋”的地方,例如泵的人口管道,在不可避免出现“气袋”的上部;

2)P&ID标注的地方;

3)设备或答道系统高处设排气管。

(4)下列部位带设置排液:

l)呈“液袋”的地方;

2)P&ID标注的地方;

3)管廊上公用工程管道的末端;

4)其他,例如当最冷月平均温度为O℃或低于介质凝固点(冰点)时,应在阀后设排液管,其排液管应靠近切断阀,排液阀应靠近主管;

5)调节阀前与切断阀之间应加排液管;

6)大直径的管道(如原油管道等)不易吹扫干净,应加低点排液管。

60????????对管道上排气、排液管的安装有何具体要求?

答:管道上排气、排液管的安装要求如下:

(1)管道上高点放空口设置的位置宜靠近平台、支架、构筑物以及易于操作之处;

(2)管道上低点放净口设置的位置附近宜设地漏、地沟或用软管接至地漏、地沟处;

(3)为保证阀门检修、丝堵、管帽及法兰拆卸、软管连接,管道上低点放净管管端距地面或楼板面的净距不得小于100mm;

(4)管道上的放空、放净口安装位置尽量设置在物料流向的下游端部靠近弯头处,但不应设在弯头上;管道上放空、放净口设置的阀门应靠近主管;

(5)对易自聚、易冻结、易凝固、含固体介质的管道上的放净管不应有拐弯;对于浆液

管道不宜设置排气和排液管,如需设置排液管时,排液管应与水平浆液管底部成切线方向;

(6)管径小于DN40的管道可不设高点排气;对于全厂性的工艺、凝结水和水管道(非埋地),在历年一月份平均温度高于0℃的地区;应少设低点排液;

(7)振动管道上直径小于DN40密闭放空。放净管跟部接口处应采取加强措施;

(8)接地漏或开口罐的放净管管口应高出地漏或罐口大于或等于50mm;

(9)放气或排液管上的切断阀,宜用闸阀,阀后可接带管帽短管;对于高压、极度及高度危害介质的管道应设双阀。当设置单网时,应加盲板或法兰盖;

(10)连续操作的可燃气体管道低点的排液阀,应为双阀,排出的液体应排放至密闭系统;仅在开停工时使用的排液阀,可设一道阀门并加螺纹堵头、管帽、盲板或法兰盖。可燃液体管道以及大于2.5MPa蒸汽管道上排液管装一个切断阀时,应在端头加管帽(管堵)、盲板或法兰盖。

61????????向大气排放的非可燃气体放空管高度应符合哪些要求?

答:向大气排放的非可燃气体放空管高度应符合下列要求:

(1)设备或管道上的放空管口、应高出邻近的操作平台面2m以上;

(2)紧靠建筑物、构筑物或其内部布置的设备或管道的放空口,应高出建筑物、构筑物2m以上。

62????????可燃气体排气筒、放空管的高度,应符合哪些规定:

答:可燃气体排气筒、放空管的高度,应符合下列规定:

(1)连续排放的可燃气体排气筒顶或放空管口,应高出20m范围内的平台或建筑物顶3.5m以上。位于20m以外的平台或建筑物,应符合图5.2.73的要求;

?



图5.2.73可燃气体排气筒或放空管高度示意图

注:阴影部分为平台或建筑物的设置范围

(2)间歇排放的可燃气体排气筒项或放空管口,应高出10m范围内的平台或建筑物顶3.5m以上。位于10m以外的平台或建筑物,应符合图5.2.73的要求;

(3)甲、乙、丙类设备上开停工用放空管可就地向大气排放,放空管口的高度应高出平台2.2m以上,放空管口一般垂直向上,并加防雨罩;

(4)可燃气体排放管和火炬总管应有防静电接地设施。

63????????安全泄压装置的出口介质允许向大气排放时,应符合哪些要求?

答:安全泄压装置的出口介质允许向大气排放时,应按下列要求布置:

(1)放空管口不得朝向邻近设备或有人通过的地区;

(2)放空管口的高度应高出以安全泄压装置为中心,半径为8m的范围内的最高操作平台3m。

64????????机泵的地漏及排污沟的设置是如何考虑的?

答:(1)机泵的地漏(漏斗)的设置:

l)地漏(漏斗)的位置应选择在有利于泵的排液及过滤器排污的地方;

2)对冷却水的轻质油品泵可设排污泄漏,地漏直接至埋地排污管2

3)安装在地坑内的泵,坑内必须设地漏(或抽水设施),以便排出坑内积水。

(2)机泵的排污沟的设置:

l)在泵基础周围设排污沟,亦可采用泵基础端对齐而集中布置的泵前设排污沟;

2)在室外集中布置的酸、碱或其他化学药剂等有腐蚀介质的泵区,应考虑耐酸、碱地面,并设围堰,堰内地面坡向排污沟,排入含酸、含碱或其他污水系统。

65????????工艺装置内甲、乙类设备高于15m的构架平台,消防给水竖管的设置应符合哪些规定?

答:(l)按各层需要设置带阀门的管牙接口;

(2)平台面积小于或等于50时。管径不宜小于80mm;大于50时,管径不宜小于100mm;

(3)构架平台长度大于25m时,宜在另一侧梯子处增设消防给水竖管,且消防给水竖管的间距不宜大干50m。

66????????阀门的主要功能是什么?其选用原则是什么?

答:阀门是工业管道系统的重要组成部件,在生产过程中起着重要作用。

阀门的主要功能有:

l)接通和截断介质——可选用闸阀、蝶阀、球阀;

2)防止介质倒流——可选用止回阀;

3)调节介质压力、流量——可选用截止阀、调节阀;

4)分离、混合或分配介质——可选用旋塞阀、闸阀、调节阀;

5)防止介质压力超过规定数值,以保证管道或设备安全运行——可选用安全阀。选用阀门主要从装置无故障操作和经济两方面考虑。。

(2)阀门的选用原则如下:

1)输送流体的性质;

2)阀门的功能;

3)阀门的尺寸;

4)阀门的阻力损失;

5)阀门的工作温度和工作压力;(对可为两条)

6)阀门的材质。

67????????阀门安装的一般要求是什么?

答:阀门安装的一般要求、最适宜的安装高度、水平管道上阀门、阀杆方向如下:

(l)阀门应设在容易接近、便于操作、维修的地方。成排管道(如进出装置的管道)上的阀门应集中布置,并考虑设置操作平台及梯子。平行布置管道上的阀门,其中心线应尽量取齐。手轮间的净距不应小于10Qmm,为了减少管道间距,可把阀门错开布置;

(2)经常操作的阀门的安装位置应便于操作,最适宜的安装高度为距离操作面1.2m上下。当阀门手轮中心的高度超过操作面2m时,对于集中布置的阀组或操作频繁的单独阀门以及安全阀应设置平台,对不经常操作的单独阀门也应采取适当的措施(如链轮、延伸杆、活动平台和活动梯子等)。链轮的链条不应妨碍通行。危险介质的管道和设备上的阀门,不得在人的头部高度范围内安装,以免碰伤人头部,或由于阀门泄漏时直接伤害人的面部;

(3)隔断设备用的阀门宜与设备管口直接相接或靠近设备。与极度危害、高度危害的有毒介质的设备相连接管道上的阀门,应与设备谷口直接连接,该阀门不得使用链轮操纵;

(4)事故处理阀如消防水用阀、消防蒸汽两阀等应分散布置,且要考虑到事故时的安全操作。这类阀门要布置在控制室后。安全墙后、厂房门外、或与事故发生处有一定安全距离的地带;以便发生火灾事故时,操作人员可以安全操作;

(5)除工艺有特殊要求外,塔、反应器、立式容器等设备底部管道上的阀门,不得布置在裙座内;

(6)从干管上引出的水平支管的切断阀,宜设在靠近根部的水平管段上;

(7)升降式止回阀应安装在水平管道上,立式升降式止回阀应安装在管内介质自下而上流动的垂直管道上。旋启式止回阀应优先安装在水平管道上,也可安装在管内介质自下而上流动的垂直管道上;底阀应安装在离心泵吸人管的立管端;为降低泵出口切断阔的安装高度,可选用蝶形止回阀;泵出口与所连接管道直径不一致时,可选用异径止回阀;

(8)布置在操作平台周围的阀门的手轮中心距操作平台边缘不宜大于450mm,当阀杆和手轮伸入平台上方且高度小于2m时,应使其不影响操作人员的操作和通行;

(9)地下管道的阀门应设在管沟内或阀井内,必要时,应设阀门延伸杆。消防水阀井应有明显的标志;

(10)水平管道上的阀门,阀杆方向可按下列顺序确定:垂直向上;水平;向上倾斜45°;向下倾斜45°;不得垂直向下;

(11)阀杆水平安装的明杆式阀门,当阀门开启时,阀杆不得影响通行。

68????????呼吸阀的安装有哪些要求?

答:(1)呼吸阔应安装在储罐气相空间的最高点,以降低物料蒸发损耗和以便顺利地提供通向呼吸阀最直接和最大的通道。通常对于立式罐,呼吸阀应尽量安装在罐顶中央顶板范围内,对于罐顶需设隔热层的储罐、可安装在梯子平台附近;

(2)当需要安装两个呼吸阀时,它们与罐顶中心应对称布置;

(3)若呼吸阀用在氮封罐上,则氮气供气管的接管位置应远离呼吸阀接口,并由罐顶部插入储罐内约200mm,这样氮气进罐后不直接排出,达到氮封的目的。

69????????调节阀组安装的一般要求是什么?

答:(1)调节阀的安装位置应满足工艺流程设计的要求,并应靠近与其有关的一次指示仪表,便于在用旁路阀手动操作时能观察一次仪表;

(2)调节阀应布置在地面或平台上且便于操作和维修处;

(3)调节阀应正立垂直安装于水平管道上,特殊情况下方可水平或倾斜安装,但须加支撑;

(4)调节阀组(包括调节阀、旁路阀、切断阀和排液阀)立面安装时,调节阀应安装在旁路的下方。公称直径小于25mm的调节阀,也可安装在旁路的上方;

(5)调节阀底距地面或平台面的净空不应小于4oomm。对于反装阀芯的单双座调节阀,宜在阀体下方留出抽阀芯的空间;

(6)调节阀膜头顶部上方应有不小于2mm的净空。调节阀与旁路阀上下布置时应措开位置;

(7)切断阀应选用闸阀,旁路阀应选用截止阀,但旁路阀公称直径大于150mm时,可选用闸阀,两个切断阀与调节阀不直布置成直线;

(8)在调节阀入口侧与调节阀上游的切断阀之间管道的低点应设排液阀,排液阀可选闸阀;

(9)介质中含有固体颗粒的管道上的调节阀应与旁路阀布置在同一个平面上或将旁路阀布置在调节阀的下方;

(10)低温、高温管道上的调节阀组的两个支架中应有一个是固定支架,另一个是滑动支架;

(11)调节阀应安装在环境温度不高于60℃,不低于-40℃的地方,并远离振动源;

(12)在一个区域内有较多的调节阀组时,应考虑形式一致,整齐、美观及操作方便;

(13)调节阀与隔断阀的直径不同时,异径管应靠近调节间安装;

(14)要注意工艺过程对调节阀位置有无特殊要求。

70????????什么叫安全阀设定压力、最大标定爆破压力和最大泄放压力?何谓独立的压力系统?

答:(1)安全阀设定压力

安全阀阀瓣在运行条件下开始升起的进口静压力。在该压力下,开始有可测量的开启高度,流体呈可由视觉或听觉感知得连续排出状态。又称为开启压力、整定压力。

(2)最大标定爆破压力

同一批次爆破片、在一定温度下进行爆破试验,若产品合格,则试验得到的最大爆破压力为这一批次爆破片的最大标定爆破压力

(3)最大泄放压力

安全阀泄放状态阀瓣达到规定开后高度时的最大进口压力。爆破片装置的最大泄放压力为泄放状态下的最大压力。

(4)两端有阀门可与其他系统隔断的一个或多个设备(容器),采用相应的管道系统连接,且中间无阀门隔断,则可视为一个独立的压力系统。

71????????哪些设备应设安全阀?哪些设备不宜设安全阀?

答:按《石油化工企业设计防火规范))GB50160的规定,在不正常条件下,可能超压的下列设备应设安全阀:

(1)顶部操作压力大于0.07MPa的压力容器;

(2)顶部操作压力大于0.03MPa的蒸馏塔、蒸发塔和汽提塔(汽提塔顶蒸汽通人另一蒸馏塔者除外);

(3)往复式压缩机各段出口或电动往复泵、齿轮泵、螺杆泵等容积式泵的出口(设备本身已有安全阀者除外);

(4)凡与鼓风机、离心式压缩机、离心泵或蒸汽往复泵出口连接的设备不能承受其最高压力时,上述机泵的出口;

(5)可燃气体或液体受热膨胀,可能超出设计压力的设备。

下列工艺设备不宜设安全阀:

(l)加热炉炉管;

(2)在同一压力系统中,压力来源处已有安全阀,则其余设备可不设安全阀。对扫线蒸汽不宜作为压力来源。

72????????为保证压力管道的安全,哪些压力管道上应设安全阀?

答:为保证压力管道的安全,下列压力管道应设安全阀:

(1)在电动往复泵、齿轮泵或螺杆泵等容积泵的出口管道上,应设安全阀。安全阀的放空管应接至泵人口管道上,并宜设事故停车联锁装置(如设备本身已有安全阀者除外);

(2)在可燃气体往复式压缩机的各段出口应设安全阀,安全阀的放空管应接至压缩机各段入口管道上或压缩机一段人口管道上;

(3)可燃气体和可燃液体受热膨胀可能超过设计压力的管道应设安全阀;

(4)在两端有可能关闭,而导致升压的液化烃管道上,应设安全阀或采取其他安全措施;

(5)凡与鼓风机、离心式压缩机、离心泵或蒸汽往复泵出口连接的设备不能承受其最高压力时,上述机泵的出口管道需设安全阀。以上管道有可能由于火灾、操作故障或停水、停电等造成管道内压力超过设计压力而发生爆炸事故,故应设置安全阀或其他安全措施。

73????????安全阀的安装及其管道布置设计的要点是什么?

答:(1)安全阀应直立安装并靠近被保护的设备或管道。如不能靠近布置,则从被保护的设备或管道到安全阀入口的管道总压降,不应超过安全阀定压值的3%。

(2)安全阀宜设置检修平台。布置重量大的安全阀时要考虑安全阀拆卸后吊装的可能,

必要时应设吊杆。

(3)安全阀入口管道应采用长半径弯头。

(4)安全阀出口管道的设计应考虑背压不超过安全阀定压的一定值。对于普通型弹簧式安全阀,其背压不超过安全阀定压值的10%。

(5)当排入放空总管或去火炬总管的介质带有凝液或可冷凝气体时,安全阀的出口应高于总管;否则,应采取排液措施。

(6)排入密闭系统的安全阀出口管道应顺介质流向45°斜接在排放总管的顶部,以免总管内的凝液倒流入支管,并可减少安全阀背压,

(7)当安全阀进出口管道上设有切断阀时,应选用单闸板闸阀,并铅封开,阀杆应水平安装,以免阀杆和阀板连接的销钉腐蚀或松动时,阀板下滑。当安全阀设有旁路阀时,该阀应铅封关。

74????????管件的布置一般要求是什么?

答:(l)弯头宜选用曲率半径等于1.5倍公称直径的长半径弯头;输送气固、液固两相流物料的管道应选用大曲率半径弯管;

(2)省廊上水平管道变径连接,如无特殊要求,应选用底平偏心异径管;垂直管上宜选用同心异径管;

(3)对于水平吸入的离心泵,当入口管变径时,应在靠近泵的入口处设置偏心异径管。当管道从下向上进泵时,应采用顶平安装,当管道从上向下进泵时,宜采用底平安装;

(4)平焊法兰不应与无直管段的弯头直接连接;

(5)阀门和其他静密封接头宜安装在管道支撑点的附近;

(6)除工艺有特殊要求外,塔、反应器、立式容器等设备裙座内的管道上不得布置法兰和螺纹接头;

(7)机泵润滑油系统的碳素钢管道、输送有固体沉积及结焦介质的管道等应分段设置法兰。机泵润滑油系统的碳素钢管道每段管道上的弯头不宜超过2个;

(8)机泵润滑油系统的润滑油主管的末端,应用法兰盖封闭;

(9)调节阀两侧管道上的异径管应紧靠调节阀;

(10)采用异径法兰连接时,输送介质的流向宜自小口径流向大口径。

75????????阻火器的设置和选用有什么要求?

答:(l)放空阻火器的设置

下列放空或排气管道上应设置放空阻火器:

1)闪点低于或等于43℃或流体最高工作温度高于或等于流体闪点的储罐直接放空管道(含带有呼吸阀的放空管道)。流体最高工作温度应计及环境。阳光照射和加热装置失控等因素;

2)可燃气体在线分析设备的放空总管;

3)进入爆破危险场所的内燃发电机排气管道。

(2)管道阻火器的设置

符合下列条件之一者应在管道系统的指定位置设置管道阻火器:

l)输送有可能产生爆炸或爆轰的爆炸性混合气体的管道(应考虑可能的事故工况),应在接受设备的入口处,设置管道阻火器;

2)输送能自行分解爆炸并引起火焰蔓延的气体管道(如乙炔),应在接受设备的入口或试验确定的阻止爆炸最佳位置处,设置管道阻火器;

3)火炬排放气进入火炬头前,应设置阻火器或阻火装置。

(3)阻止器选用规定

1)流体在操作工况(压力、温度、管道尺寸、长度、形状,及阻火器安装位置与点火源的距离)下的最大试验安全间隙(MESG)应大于阻火器的MESG值。按照《爆炸性环境用防爆电气设备,气体或蒸汽混合物按照其最大试验安全间隙和最小点燃电流的分级》GB3836.12,对爆炸性气体混合物,按MESG值分成不同的技术安全等级。如表5.2.97所示。

表5.2对最大试验安全间隙(MESG)分级表

级别 最大试验安全间隙(MESG)mm ⅡA ≥0.90 ⅡB 0.90>MESG>0.50 ⅡC ≤0.50 2)阻火器的选用应符合《石油气体管道阻火器性能和试验方法》GB13347、《石油储罐阻火器火性和试验方法》GB5908和《石油化工石油管道阻火器选用、检验及验收》SH/T3413的规定。

76????????阻火器的布置有什么要求?

答:(1)加热炉燃料气主管上的管道阻火器,应靠近加热炉,并便于检修,管道阻火器与燃烧器距离不宜大干12m;

(2)罐用阻火器应直接安装在储罐顶的管口上,通常与呼吸阀配套使用,也可单独使用。

77????????过滤器的布置有什么要求?

答:(1)机泵入口均应安装过滤器。过滤器的安装位置应靠近被保护的设备;

(2)过滤器的布置应符合下列要求:

1)角式T型过滤器必须安装在管道90°拐弯的场合;

2)直通式T型过滤器必须安装在管道的直管上,安装在立管上时,应考虑方便滤网的抽出;安装在水平管时,滤网抽出方向应向下;

3)Y型过滤器安装在水平管道上时,滤网抽出方向应向下。

(3)安装在立管上的泵人口过滤器,为降低泵入口阀门的高度,可采用异径过滤器;

(4)Y型过滤器安装在介质自下向上的垂直管道上时,应选用反流式;

(5)压缩机入口管道上应装过滤器或可拆卸短节,以便开车前安装临时过滤器和清扫管道。

78????????过滤设备管道布置设计的一般要求是什么?

答:(1)输送滤浆的管道水力计算和泵的NPSN计算时,必须按液固两相流进行滤浆物性数据及阻力计算,浆料管内管道流速可按滤浆中固体颗粒沉降速度l.5~2倍取值,如无沉降速度测值,管内流速一般取值2.5~3m/s;

(2)管道尽可能走直线,安装坡度要大(最小坡度I≥10%),少用弯头,弯管的曲率半径适当大(R≥4DN),要避免管径的突然放大;

(3)管道连接少用焊接,多用法兰或螺纹连接,以便于拆卸、清洗。异径管直采用法兰连接的偏心异径管,真空管道则采用焊接,少用法兰连接;

(4)每根液固两相流管道上,在适当的位置设冲洗(或吹扫)接管和放料排净管,冲洗水管的接管点设在物料管道上方或侧方,冲洗管上的阀门尽可能垂直安装;

(5)流浆管路上阀门要选用阀体内流体通道不曲折且无死角的直通式阀门,推荐用隔膜阀、管夹阀。软密封式蝶阀、球阀或旋塞。阀门水平安装时,阀门前后物料管道上装设带阀的排净管及冲洗接管,垂直安装时,在阀门的上方侧物料管上装排放和冲洗接头;

(6)滤浆管道为了防堵,不设旁路,选用带导轮的控制;

(7)滤浆为含结晶的晶浆时,管路系统需设夹套或伴热保温,阀门选用带保温加热结构的球阀或软密封式蝶阀;

(8)过滤系统的滤液泵及洗涤液泵的管道设计要求按??HG/T?20549.2规定;

(9)滤浆槽、滤液槽的排气不设阀门,当物料系易燃、易挥发、有毒时,排气管需设呼吸阀和阻火器。

79????????补偿器的布置对管道有什么要求?

答:(l)由于设备布置或其他因素使管道系统的几何形状受到限制,补偿能力不能满足要求时,应在管道系统的适当位置安装补偿器。

(2)“Π”形补偿器与固定点的距离不宜小于两固定点间距的三分之一。

(3)布置无约束金属波纹管补偿器应符合下列要求:

1)两个固定支座间仅能布置一个补偿器;

2)对管道必须进行严格地保护,尤其是靠近补偿器的部位应设置导向架,第一个导向支架与补偿器的距离应小于或等于4倍公称直径,第二个导向支架与第一个导向支架的距离应小于或等于14倍公称直径,以防止管道有弯曲和径向偏移造成补偿器的破坏。

(4)储罐前的管道当地震烈度等于或大于7度、有不均匀沉陷,且公称直径等于或大于150mm时应设置储罐抗震用金属软管。金属软管的直径不应小于储罐进出管口的直径。金属软管应布置在靠近储罐壁的第一道阀门和第二道阀之间。

80????????管道上的仪表或测量元件的布置一般要求是什么?

答:(1)管道上的仪表或测量元件的布置应符合现行的有关工业企业仪表配管、配线设计规范的规定;

(2)管道上的仪表或测量元件的布置应便于安装、观察和维修。必要时应设置专用的操作平台或梯子;

(3)仪表管嘴的长度应根据管道的隔热层厚度确定。

81????????流量测量仪表的布置有什么要求?

答:(1)为了保证孔板流量计测量准确,孔板前宜有15~20倍管子内径的直管段,孔板后有不小于5倍管子内径的直管段;

(2)流量计安装应符合下列规定:

1)转子流量计必须安装在介质流向自下向上的、无振动的垂直管道上。安装时要保证流量计前应有不小于5倍管子内径的直管段,且不小于?300mm;

2)当被量介质中含有固体悬浮物时,靶式流量计需要水平安装。靶式流量计安装在垂直管道上时,液体流向宜由下而上。靶式流量计人口端前直管段长度不应小于5倍管子内径,出口端后的直管段长度不应小于3倍管子内径;

3)腰轮流量计宜安装在调节阀前。当流量计需进行现场校验时,应在腰轮流量计前切断阀的前后设二个带快速接头的校验用闸阀。

82????????压力测量仪表的布置有什么要求?

答:(1)为了准确地测得静压,压力表取压点应在直管段上,并没切断阀。

(2)泵出口的压力表应装在出口阀前并朝向操作侧。

(3)现场指示压力表的安装高度宜为1.2~1.8m,当超过2.0m时,应有平台或直梯。

83????????温度测量仪表的布置有什么要求?

答:(l)温度计、热电偶宜安装在直管段上,其安装要求最小管径规定如下:

1)工业水银温度计,DN50;

2)热电偶、热电阻、双金属温度计,DN80;

3)压力式温度计,DN150;

4)扩径管长度不应小于?250mm。

(2)温度计、热电偶在管道拐弯处安装时,管径不应小于DN40,且与管内流体流向成逆流接触。

(3)温度计可垂直安装或倾斜45°安装,倾斜45°安装时,应与管内流体流向成逆流接触。

(4)现场指示温度计的安装高度宜为1.2~1.5m。高于2.0m时宜设直梯成活动平台。为了便于检修,距离平台最低不宜小于300mm。

(5)对于有分支的工艺管道,安装温度计或热电偶时,要特别注意安装位置与工艺流程相符,且不能安装在工艺管道的死角、盲肠位置。

84????????液位测量仪表的布置有什么要求?

答:(1)玻璃管液面计和玻璃板液面计应直接安装在设备上,液面计的位置不应妨碍人员的通行。

(2)外浮筒液位计的安装位置不应妨碍人员通行,液位计表头上端距地面或平台不宜高于1.8m,超过2.0m应增设平台。

(3)内浮球液位计距平台或地面的高度直为1.0~1.5m,安装的位置不应妨碍人员通行,并留有足够的空间,便于检修和调整。

85????????塔上液面计和液面调节器的管口方位设计有何要求?

答:(1)塔上液面计和液面调节器的管口方位取决于受液槽与重沸器返回口之间的关系,应避开重沸器返回管口正面60°角范围内(接口处设有挡板除外),使液面不受流入液体冲击的影响;

(2)应设置在靠近平台或梯子处,便于操作的地方,不应安装在塔平台入口处,以免堵塞通道;

(3)应设置在便于监视和检查时可看到液面的地方。

86????????安全防护设置的一般要求是什么?

答:设计应评估下列(1)~(4)各种因素,结合规范各部分规定的安全防护的目标和要求,采取相应的安全防护措施:

(l)由流体性质以及操作压力-温度确定的流体危险性;

(2)由管道材料、结构、连接形式及其安全运行经验确定的管道安全性;

(3)管道一旦发生损坏或泄漏,导致流体的泄漏量及其对周围环境、设备造成的危害程度;

(4)管道事故对操作、维修以及一切可能接触人员的危害程度。

87????????在管道设计中如何设置安全防护和措施?

答:(1)根据生产操作特点设置必要的安全防护和措施:

l)灭火消防系统和喷淋设施;

2)建构筑物的防火结构(防火墙、防爆墙等);

3)通风去除有毒、腐蚀性或可燃性蒸汽;

4)遥测和遥控装置;

5)紧急处理有害物质设施(储存或回收装置。火炬或焚烧炉等)。

(2)在脆性材料管道系统或法兰。接头、阀盖、仪表或视镜处设保护罩,以限制和少泄漏的危害程度。

(3)采用自动或遥控的紧急切断、过流量阀、附加的切断阀、限流孔板或自动关闭压力源等方法,以限制流体泄漏的数量和速度。

(4)处理事故用的阀门(如紧急放空、事故隔离、消防蒸汽、消火栓等),应布置在安全、明显、方便操作的地方。

(5)进出装置的可燃、有毒物料应在界区边界处设置切断阀,并在装置侧设“8”字盲板,防止装置火灾时相互影响。

(6)设置必要的防护面罩、防毒面具、应急呼吸系统、专用药剂。便携式可燃和有毒气体检测报警系统等卫生安全设备。在可能造成人体意外伤害的排放点或泄漏点附近应设置紧急淋浴和洗眼器。

(7)对于有辐射性的流体需设置屏蔽保护、自动报警系统,并配备专用的面具、手套和防护服等。

(8)对爆炸、火灾危险场所内可能产生静电危险的管道系统均应采取静电接地措施。可通过设备、管道及土建结构的接地网接地。其他防静电要求应符合《防止静电事故通用导则》GB12158的规定。

(9)盲板设置应符合下列要求:

l)当装置内停运维修时,装置外有可能或要求继续运行的管道,在装置边界处除设置切断阀外,还应在阀门的靠装置一侧的法兰处设置盲板;

2)运行中,当有的设备需切断检修时,在阀门与设备之间法兰接头处应设置盲板对于有毒、可燃流体管道、阀门与盲板之间装有放空阀时,放空阀后的管道,应引至安全地点。

(10)公用工程(蒸汽、空气、氮气等)管道与GC1级、GC2级管道连接时,应符合下列要求:

l)在连续使用的公用工程管道上应设止回阀,并在其根部设切断阀;

2)在间歇使用的公用工程管道上应设两道切断阀,并在两阀间设检查阀。

88????????管道穿过建筑物的楼板、房顶或墙时,应采取哪些措施?

答:管道穿过建筑物的楼板、房顶或墙时,在穿孔处应加套管,套管与管道之间的空隙应以软质材料封堵。套管直径应大于管道或限热管道的隔热层外径,并且不影响管道的热位移。套管应高出楼板或房顶50mm。处于顶层者必要时应设防雨罩。管道的焊缝不应位于套管内,并阻套管端部不小于150mm。管道不应穿过防火墙和防爆墙。

献花(0)
+1
(本文系zhanglihui0...首藏)