分享

外刊双语阅读|全球首个活体机器人诞生:可编程,会自愈

 高天明月图书馆 2020-05-15

机器人的形态和大小各异。有的类似人形,有的模仿动物,还有许多不过是在生产线上苦干的一堆机器臂。但所有机器人都有一个共同点,那就是它们都是机械,而不是生物性设备。不过现在不一样了。美国一个研究团队设法使用未经修改的生物细胞创造出了新型有机体,它们或许能执行多种工作,甚至还可以让它们自我繁殖。

双语阅读

What Joshua Bongard of the University of Vermont and Michael Levin of Tufts University in Massachusetts have come up with is different. As they report in the Proceedings of the National Academy of Sciences, they and their colleagues have designed organic robots from their cellular components, and then set about realising those designs by joining together specific types of stem cells taken from a well-studied species of African frog, Xenopus laevis.

佛蒙特大学的约书亚·邦加德和马萨诸塞州塔夫茨大学的迈克尔·莱文想到的办法与众不同。他们在《美国科学院院报》上发表文章称,他们和同事用细胞组件设计出了有机机器人,并着手将特定类型的干细胞组合起来实现这些设计。这些细胞取自一个经充分研究的物种——非洲爪蟾。

The result is close to matching the biological definition of an organism, in that it is capable of behaving autonomously and contains cell types that are specialised to perform different roles.

其成果已经接近符合生物学上有机体的定义,因为它具备自主行为的能力,并包含专门执行不同功能的各类细胞。

Though only a millimetre or so across, the artificial organisms Dr Bongard and Dr Levin have invented, which they call xenobots, can move and perform simple tasks, such as pushing pellets along in a dish. That may not sound much, but the process could, they reckon, be scaled upand made to do useful things. Bots derived from a person’s own cells might, for instance, be injected into the bloodstream to remove plaque from artery walls or to identify cancer. More generally, swarms of them could be built to seek outand digest toxic waste in the environment, including microscopic bits of plastic in the sea.

邦加德和莱文管他们发明的人工有机体叫“爪蟾机器人”,虽然直径只有一毫米左右,但能移动并执行简单的任务,例如在培养皿里推动颗粒。这听起来可能没什么,但他们认为可以将这个过程放大,从而完成有用的工作。例如,可以从人的自体细胞培育出机器人,然后再注射到血液中去清除动脉血管壁上的斑块或者识别癌症。在更广泛的应用场景中,它们可以被批量制造出来,在环境中寻找并消化有毒废物,包括海洋中的塑料微粒。

To design their bots Dr Bongard and Dr Levin employed a computer program called an evolutionary algorithm. This worked by creating virtual representations of thousands of arrangements of cells that might achieve a particular task. It then tested those arrangements, using what is known about the biophysics of Xenopus cells, for suitability to perform the task in question, picked the most promising versions to form the basis for thousands more cellular arrangements, and then repeated the process until something properly fit for purpose emerged.

为了设计这种机器人,两位研究员使用了一种名为进化算法的计算机程序。这个程序创建出成千上万种细胞排列方式的虚拟呈现,它们有潜力完成某种特定任务。然后利用已知的非洲爪蟾细胞的生物物理知识测试这些排列,确定它们是否适合执行目标任务,再从中挑选出最有希望的方案。接下来,以此方案为基础,继续创建成千上万新的细胞排列方案。不断重复这个过程,直至得到符合目标用途的方案。

That done, it was merely a matter of building the pattern which the algorithm had arrived at out of actual Xenopus cells, using microsurgical techniques to shape groups of cells in the way the pattern dictated.

完成这些之后,就只需要使用显微外科技术,把真实的活体非洲爪蟾细胞,按照该算法得出的模式,将细胞群组装起来。

本文节选自:NewYorker(纽约客)

发布时间:2020.04.20

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多