分享

logistic模型(logit和logistic模型的区别?)

 轻评 2020-06-20

logit和logistic模型的区别?

关于logit和logistic模型的区别貌似是个老生常谈的问题,学习之后稍微整理一下: (1)二者的根本区别在于广义化线性模型中的联系函数的形式。logit采用对数形式log(a),logistic形式为log(a/1-a)。 (2)应用上,普通logistic的响应变量是二元的,多元logistic的因变量可为多元。logit的响应变量可以是多元的。 (3)统计软件spss中:logit属于对数线性模型,分析结果主要为因变量和自变量之间的关系,可以细化到各分类因变量与分类自变量之间;logistic属于回归分析,分析结果为估计出自变量参数。regression下有Binary logistic regression和 Multinomial logistic regression 。因变量只取0和1时用的就是Binary logistic regression 。而Multinomial logistic regression 分为多分类无序因变量和多分类有序因变量的logistic回归。即因变量多于两个的。 (4)当因变量是多类的,可以采用logistic,也可以用logit,计算结果并无多少差别。 看到前面几个有关Logit回归的问题,给大家做点贡献吧。 1,对于(0,1)的情况,SAS里面默认0在先。要么你编码的时候讲事件编为0,要么在回归的时候加上Descending的选项。 2,结果一般用两张表。第一张就像一般的OLS回归,汇报系数的大小和符号(是的,Logit系数大小没有意义,符号表示影响的方向),系数是否为0的统计值,样本量(这个很重要,我看所有的文章里都有),最后就是模型的Fit。 3,系数是否为零的检验,可以直接汇报SAS结果里面的P值,也可以根据开方值计算通常用的T值,你知道,开方的平方根就是近似的T值。注意,不要汇报开方,看起来很傻的。 4,拟合度方面,现在流行报告一个PseudoR2(有人叫假R2)。比较流行的就是McFadden1974的方法。很简单,用Log-Likelihood(SAS结果的-2 Log L)的Intercept Only除于InterceptAndCovariates再减去1就是假R2了。 第一章表就结束了。因为Logit不是线性模型,系数大小没有意义,要解释每个变量到底在多大程度上影响自变量,就有了第二张表,就是要汇报概率相对于解释变量变化的变化,也就是DependentVar的Derivative,下次再说。

logit和logistic模型的区别?

区别如下;

一、意思不同

logistic回归是概率模型,非线性表达式,其线性表达式即logit回归。logistic回归计算的是P,而logit回归计算的是logit(p)。logistic属于概率型非线性回归,是研究二分类(可扩展到多分类)观察结果与一些影响因素之间关系的一种多变量分析方法。

二、参照不同

Logit是把其中的一种选择作为另一种选择的参照,而Logistic是把一件事不发生作为这件事发生的参照。模型上完全一致。只不过由于Logit选取了一种选择项作为参照,因此在模型中的一个参数对应两个变量,分别对应两种选择项。而Logistic由于参照对象是事件的不发生,即事件自身,因此一个参数只对应一个变量。但是本质完全一样。

三、模式不同

Logit模型的左侧是Odds的对数,而Logistic模型的左侧是概率。

Logit模型的右侧是一个线性结构,而Logistic模型的右侧是非线性的。


logistic模型,logit还有probit这些都是什么关系啊?

logit模型也叫Logistic模型,服从Logistic分布。probit模型服从正态分布。两个模型都是离散选择模型的常用模型。但logit模型简单直接,应用更广。离散选择模型的软件很多,有limdep,elm、nlogit等。spss18.0中能做2元和多元logit模型。stata,sas,guass都能做logit模型。入门级的软件是spss和elm,后者可以做多元logit和分层logit。但是elm必须购买注册号才能使用。

logistic模型对世界人口增长过程的适用性?

logistic模型也称“S”型模型,可以用来描述种群个体数目增长变化的过程,不太适用于世界人口增长过程。因为人的社会性太强,不完全受生物环境的控制。

文章来源:鸡毛信期刊网

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 全屏 打印 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多