分享

干货| 【时间简“识”】2.那些必不可少的预处理

 liyu_sun 2020-06-29

让涨知识成为一种习惯

时间简“识”

(二)

稳稳的序列,稳稳的幸福


我要稳稳的幸福…不,我要稳稳的序列——

说到时序的平稳,其实我们说的是两种平稳——宽平稳、严平稳。


严平稳相较于宽平稳来说,条件更多更严格,而我们时常运用的时间序列,大多宽平稳就够了。


什么是严平稳:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。这样,数学期望和方差这些参数也不随时间和位置变化(比如白噪声)。

什么是宽平稳:宽平稳是使用序列的特征统计量来定义的一种平稳性。它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。


两者关系:
一般关系:严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳成立。


特例:不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯西分布的严平稳序列就不是宽平稳序列。当序列服从多元正态分布时,宽平稳可以推出严平稳。

稳不稳看哪里?


咱们这次先从图形法上看(通常越是简单的方法,往往越能看到问题,图形给出的第一感觉也许就是真相哦)
我们有个时序图,例如:

分析:什么样的图不平稳?

先说下什么是平稳:平稳就是围绕着一个常数上下波动。


看看上面这个图,很明显的增长趋势,不平稳。我们还可以根据自相关和偏相关系数来查看:

以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。


分析:平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。再就是拖尾,拖尾就是有一个衰减的趋势,但是不都为 0 。


自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形。

下面是通过自相关的其他功能:


如果自相关是拖尾,偏相关截尾,则用 AR 算法
如果自相关截尾,偏相关拖尾,则用 MA 算法
如果自相关和偏相关都是拖尾,则用 ARMA 算法, ARIMA 是 ARMA 算法的扩展版,用法类似 。

如果遇到数据检测出来不平稳,可以考虑使用差分这个最常用的办法。我们依旧用上面那个序列,两种方法都证明他是不靠谱的,不平稳的。确定不平稳后,依次进行1阶、2阶、3阶...差分,直到平稳位置。先来个一阶差分:

从图上看,一阶差分的效果不错,看着是平稳的。

在图形检验法中,我们能够较为直观的看到数据的一个大致变动趋势,如果它有周期或者上升等趋势,一般就不太平稳,需要做些处理,但图形始终是个主管判断为主的方法,这次,就来说说平稳检验的另一个方法:单位根检验(ADF检验)。

主力登场:ADF检验放大招


检查序列平稳性的标准方法是单位根检验。

有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF检验。

ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便。ADF检验是在Dickey-Fuller检验(DF检验)基础上发展而来的。因为DF检验只有当序列为AR(1)时才有效。如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设。

在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根。

检验步骤(一般进行ADF检验要分3步):


1 对原始时间序列进行检验,此时第二项选level,第三项选None.如果没通过检验,说明原始时间序列不平稳;


2 对原始时间序列进行一阶差分后再检验,即第二项选1st difference,第三项选intercept,若仍然未通过检验,则需要进行二次差分变换;


3 二次差分序列的检验,即第二项选择2nd difference ,第四项选择Trend and intercept.一般到此时间序列就平稳了!


tips:
在进行ADF检验时,必须注意以下两个实际问题:
(1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。


(2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义。


① 若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线图,通过图形观察原序列是否在一个偏离 0 的位置随机变动或具有一个线性趋势,进而决定是否在检验时添加常数项。


② 若原序列中不存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有线性趋势;若原序列中存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有二次趋势。同样,决定是否在检验中添加时间趋势项,也可以通过画出原序列的曲线图来观察。如果图形中大致显示了被检验序列的波动趋势呈非线性变化,那么便可以添加时间趋势项。

我们依旧来看一个案例:

分析:从上表中可以看出,在99%、95%和90%置信度下的检验,ADF的T统计值都是小于其值的,即全部是拒绝原假设的,说明都是平稳的。在1%的显著水平下,序列都拒绝随机游走的假设,说明是平稳的时间序列数据。

连载未完  努力码字ing……

下集提示:差分、延迟算子的故事!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多