变量选择方法所有可能的回归model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ## Index N Predictors `R-Square` `Adj. R-Square` `Mallow's Cp` ## 1 1 1 wt 0.75283 0.74459 12.48094 ## 2 2 1 disp 0.71834 0.70895 18.12961 ## 3 3 1 hp 0.60244 0.58919 37.11264 ## 4 4 1 qsec 0.17530 0.14781 107.06962 ## 5 5 2 hp wt 0.82679 0.81484 2.36900 ## 6 6 2 wt qsec 0.82642 0.81444 2.42949 ## 7 7 2 disp wt 0.78093 0.76582 9.87910 ## 8 8 2 disp hp 0.74824 0.73088 15.23312 ## 9 9 2 disp qsec 0.72156 0.70236 19.60281 ## 10 10 2 hp qsec 0.63688 0.61183 33.47215 ## 11 11 3 hp wt qsec 0.83477 0.81706 3.06167 ## 12 12 3 disp hp wt 0.82684 0.80828 4.36070 ## 13 13 3 disp wt qsec 0.82642 0.80782 4.42934 ## 14 14 3 disp hp qsec 0.75420 0.72786 16.25779 ## 15 15 4 disp hp wt qsec 0.83514 0.81072 5.00000
该plot 方法显示了所有可能的回归方法的拟合 。 model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) k <- ols_all_subset(model)
 
最佳子集回归选择在满足一些明确的客观标准时做得最好的预测变量的子集,例如具有最大R2值或最小MSE, Cp或AIC。 model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ## Best Subsets Regression ## ------------------------------ ## Model Index Predictors ## ------------------------------ ## ------------------------------ ## Subsets Regression Summary ## ------------------------------------------------------------------------------------------------------------------------------- ## Model R-Square R-Square R-Square C(p) AIC SBIC SBC MSEP FPE HSP APC ## ------------------------------------------------------------------------------------------------------------------------------- ## 1 0.7528 0.7446 0.7087 12.4809 166.0294 74.2916 170.4266 9.8972 9.8572 0.3199 0.2801 ## 2 0.8268 0.8148 0.7811 2.3690 156.6523 66.5755 162.5153 7.4314 7.3563 0.2402 0.2091 ## 3 0.8348 0.8171 0.782 3.0617 157.1426 67.7238 164.4713 7.6140 7.4756 0.2461 0.2124 ## 4 0.8351 0.8107 0.771 5.0000 159.0696 70.0408 167.8640 8.1810 7.9497 0.2644 0.2259 ## ------------------------------------------------------------------------------------------------------------------------------- ## AIC: Akaike Information Criteria ## SBIC: Sawa's Bayesian Information Criteria ## SBC: Schwarz Bayesian Criteria ## MSEP: Estimated error of prediction, assuming multivariate normality ## FPE: Final Prediction Error ## APC: Amemiya Prediction Criteria
plot
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) k <- ols_best_subset(model)
 

逐步前进回归从一组候选预测变量中建立回归模型,方法是逐步输入基于p值的预测变量,直到没有变量进入变量。该模型应该包括所有的候选预测变量。如果细节设置为TRUE ,则显示每个步骤。 变量选择# stepwise forward regression model <- lm(y ~ ., data = surgical) ## We are selecting variables based on p value... ## 1 variable(s) added.... ## 1 variable(s) added... ## 1 variable(s) added... ## 1 variable(s) added... ## 1 variable(s) added... ## No more variables satisfy the condition of penter: 0.3 ## Forward Selection Method ## ------------------------------------------------------------------------------ ## ------------------------------------------------------------------------------ ## Step Entered R-Square R-Square C(p) AIC RMSE ## ------------------------------------------------------------------------------ ## 1 liver_test 0.4545 0.4440 62.5119 771.8753 296.2992 ## 2 alc_heavy 0.5667 0.5498 41.3681 761.4394 266.6484 ## 3 enzyme_test 0.6590 0.6385 24.3379 750.5089 238.9145 ## 4 pindex 0.7501 0.7297 7.5373 735.7146 206.5835 ## 5 bcs 0.7809 0.7581 3.1925 730.6204 195.4544 ## ------------------------------------------------------------------------------ model <- lm(y ~ ., data = surgical) k <- ols_step_forward(model) ## We are selecting variables based on p value... ## 1 variable(s) added.... ## 1 variable(s) added... ## 1 variable(s) added... ## 1 variable(s) added... ## 1 variable(s) added... ## No more variables satisfy the condition of penter: 0.3
 
|