成才路上 奥数国家级教练与四名特级 教师联手执教。 计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。介绍几种常用的方法。 一、转化法 此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。 二、和差法 有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。 例2. 如图,是一个商标的设计图案,AB=2BC=8,弧ADE为1/4圆,求阴影部分面积。 三、重叠求余法(容斥原理) 就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。这类题阴影一般是由几个图形叠加而成。要准确认清其结构,理顺图形间的大小关系。 例3. 如图,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。 四、补形法 将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。 例4. 如图,在四边形ABCD中,AB=2,CD=1,∠A=60° ,∠B=∠D=90°,求四边形ABCD所在阴影部分的面积。 五、拼接法(割补法) 这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可. 例5. 如图,在一块长为a、宽为b的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽都是c个单位),求阴影部分草地的面积。 六、特殊位置法 这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积. 例6、 如图,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于__________。 七、代数法 将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。 例7、.如图,正方形的边长为a,分别以两个对角顶点为圆心、以a为半径画弧,求图中阴影部分的面积。 八、对称添补法: 这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半. 例8、欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。 需要说明的是,在求阴影部分图形的面积问题时,要具体问题具体分析,从而选取一种合理、简捷的方法。 下面是常见拼接法(割补法)的图形
文章来源:数学新讲堂,作者:New Math Forum; |
|