分享

转录因子Twist在乳腺癌中的作用及研究进展

 SIBCS 2020-08-27

胡保全,胡春艳,姜军,徐琰

第三军医大学西南医院

第三军医大学大坪医院

  乳腺癌是女性最常见的恶性肿瘤,其侵袭和转移是导致患者死亡的重要原因。研究发现,转录因子Twist的表达与乳腺癌侵袭、转移、预后、耐药以及血管生成等方面都密切相关【1-3】,表明其在乳腺癌的发生、发展中发挥着重要作用。笔者就Twist基因的结构及其与乳腺癌的关系进行综述。

  1 Twist的结构

  1983年,Simpson【4】在研究果蝇胚胎异常发育过程中首先发现了Twist基因。Twist基因在脊椎动物中具有高度同源性。人Twist基因位于7p21.2,其mRNA全长1669bp,包含有2个外显子和1个内含子。第1个外显子长为772bp,包含整个编码区域,第2个外显子为5'非翻译外显子,内含子长为536bp。Twist包含Twist1和Twist2两种蛋白。目前对乳腺癌中Twist1的研究相对较多。

  2 Twist与乳腺癌的关系

  2.1 Twist的表达与乳腺癌

  Twist不仅在乳腺癌组织中呈高表达,而且与乳腺癌的不良预后密切相关。Riaz等【5】通过检测1427例乳腺癌标本发现,Twist高表达的乳腺癌患者10年OS和DFS均低于Twist低表达或阴性的患者,而且Twist的表达还与乳腺癌患者的淋巴结转移状态相关。笔者的研究也表明:Twist1高表达的乳腺癌患者,其淋巴结转移率也高,且与类固醇共激活因子1(SRC1)的表达呈正相关;Twist1和SRC1均高表达的患者,其OS和DFS率均低于Twist1或SRC1低表达的患者【6】。另外,Twist2在乳腺癌组织中的表达与E-钙黏蛋白呈负相关,也与淋巴结转移呈正相关【7】。Lim等【8】利用组织芯片技术检测了271例乳腺叶状肿瘤中Twist的表达,发现Twist的表达与患者较短时间内复发和死亡有关。还有研究发现,Twist在乳腺癌组织中的表达明显高于正常组织,且与肿瘤病理分级呈正相关【9】。Twist高表达还与乳腺癌不良预后相关【10】。

  2.2 Twist基因与乳腺癌的发生、发展、侵袭和转移

  Twist1高表达还能促进乳腺癌的侵袭、转移,导致不良预后。Yang等【11】研究发现,来源于乳腺癌的4种细胞系具有不同的癌转移能力,并通过基因图谱分析发现:(1)Twist1高表达与肿瘤细胞的转移具有明显的相关性。(2)通过RNA干扰技术抑制Twist1表达,能够降低肿瘤细胞从原发灶转移到肺的能力。(3)上皮细胞中Twist1表达能够使E-钙黏蛋白介导的细胞黏附缺失,从而活化间质细胞标志物和诱导细胞运动;Twist1基因通过与E-钙黏蛋白启动子序列上的E-box元件相结合,进而抑制细胞与细胞间黏附分子的转录表达。基于以上研究,作者认为在肿瘤中,Twist1可以通过活化上皮间质转化(EMT)而促使肿瘤发生转移。

  Twist1促进乳腺肿瘤的转移与EMT的表达密切相关【12-15】。有文献报道,在转化生长因子β1诱导的乳腺MCF-10A细胞EMT过程中,Snail的表达是EMT早期进程中所必需的,Twist1在EMT早期作用有限,但是,Twist1表达对维持EMT过程具有重要意义【14】。Ai等【12】研究发现,Twist抑制乳腺肿瘤抑制因子TRIM29的启动子活性,从而降低TRIM29蛋白表达,进而促进乳腺癌的迁移、浸润和转移。另外,Sox5可通过上调Twist表达而促进EMT【15】。Cheng等【16】的研究也发现:在乳腺癌细胞系中,信号传导与转录激活因子3(STAT3)能够增加Twist1的表达,而抑制STAT3活性则能降低Twist1表达,同时乳腺癌细胞的迁移、浸润、克隆形成等能力明显下降。该研究还发现,STAT3能与人Twist1基因启动子近端的结合位点相结合,从而活化Twist1基因的转录。由于在晚期乳腺癌中,活化的STAT3与Twist1表达水平有非常强的相关性,该研究小组推测,活化的STAT3能够在转录水平促进Twist1的表达,进而促进乳腺癌细胞的迁移、侵袭。还有研究发现,过表达Twist基因能够促进乳腺癌进展,而敲低整合素β1后,能够抑制Twist介导的EMT,从而抑制乳腺癌细胞的侵袭转移【17】。

  另有文献报道,Twist能够招募溴结构域蛋白4(BRD4)直接作用于WNT5A,抑制Twist-BRD4轴,从而降低基底细胞型乳腺癌的发展【18-19】。Zhao等【20】报道,肿瘤细胞中的p27能够激活STAT3,促进Twist介导的EMT,从而导致肿瘤细胞的转移。Eckert等【21】研究发现,血小板衍生生长因子受体α(PDGFRα)是Twist1基因的靶基因,而Twist1可诱导PDGFRα活化Src激酶形成侵袭性伪足从而降解胞外的基质。这可能是Twist1促进乳腺癌转移的又一机制。

  2.3 Twist与乳腺癌耐药

  Twist不仅能够通过EMT促进肿瘤转移,还能促进肿瘤细胞对化疗药物产生耐药现象。Cheng等【22】指出,乳腺癌细胞系中Twist基因转录上调时,癌细胞的移动、侵袭及对紫杉醇的耐药性均增加。Li等【23】发现,多柔比星处理后的乳腺癌细胞能够发生EMT,且具有较强的侵袭和多药耐药能力,而降低Twist表达,可抑制间质转换,部分逆转多药耐药。化疗导致的癌细胞凋亡还可以被核转录因子kappaB(NF-κB)调节的基因负向调节,而Twist1是NF-κB对抗化疗诱导的细胞凋亡的主要靶基因,说明Twist1在NF-κB介导的癌细胞化疗耐药中具有重要作用【24】。另一方面,Twist1过表达抑制ERα的表达,导致乳腺癌内分泌治疗抵抗【25-26】。Ma等【27】也发现,在三阴性乳腺癌4T1细胞中,他莫昔芬能够促进Twist降解,从而抑制肿瘤的侵袭和肺转移。而槲皮素也可以抑制Twist表达,从而促进乳腺癌MCF-7细胞的凋亡【28】。

  2.4 Twist与乳腺癌干样细胞

  Twist1诱导的EMT与干样细胞有着密切的联系。Mani等【29】发现,在乳腺上皮细胞中,通过表达Twist1或Snail诱导EMT后,CD44高表达和CD24低表达的干样细胞数量明显增加,分离出的乳腺上皮干样细胞能表达包括Twist1、Snail、Slug等在内的多种内源性EMT诱导因子。另一项研究发现,Twist2能够提高乳腺癌细胞的克隆形成能力和迁移能力,促进体内成瘤,Twist2高表达的乳腺癌细胞具备肿瘤干样细胞的特征【30】。Battula等【31】还发现:由Twist1或Snail诱导的细胞EMT作用,能将人乳腺上皮细胞转化为间质干样细胞,并使其具备分化为多种细胞类型(如成骨细胞、脂肪细胞)的能力;而敲低Twist1或Snail后,能明显抑制肿瘤干细胞特征【32】。研究还发现,长链非编码RNA(lncRNA)可以使Shh-GLI1通路失活,从而抑制Twist阳性肿瘤细胞的干性特征【33】。Liang等【34】研究发现,异黏蛋白通过促进组蛋白H3的乙酰化,直接活化Twist的启动区域,从而富集肿瘤干细胞。Wang等【35】也发现,过表达Twist能够上调蛋白酶激活受体1(PAR1)的表达,通过活化转录共激活分子,从而促进乳腺癌干样特征的表达。

  2.5 Twist与乳腺肿瘤血管生成

  研究表明,乳腺癌血管生成是乳腺肿瘤生长和转移的重要步骤【36】。Mironchik等【37】发现稳定转染Twist1的MCF-7细胞可以合成更多的VEGF,将该肿瘤细胞移植到SCID小鼠乳腺脂肪垫成瘤后行MRI检测,发现肿瘤中血管容积和血管通透性均明显增加。Hu等【38】在包括人乳腺癌细胞系MCF-7和小鼠乳腺癌细胞系4T1在内的乳腺恶性肿瘤中发现,凝血酶能通过调节Twist1的表达来调控VEGF、激酶插入区受体(KDR)、促血管生成素2(Ang-2)等多种血管生长因子和受体的表达,从而促进乳腺肿瘤血管生成。Banerjee等【39】发现,ER阴性乳腺癌细胞分泌的青蒿琥酯能促进人微血管内皮细胞1(HMEC-1)的增殖、迁移和管样结构形成能力,从而促进乳腺肿瘤血管生成。其作用机制可能与丝氨酸/苏氨酸蛋白激酶(AKT)-Twist1-VEGFA轴信号通路有关。Low-Marchelli等【40】报道,人乳腺上皮细胞转染Twist1并未明显增加VEGF的分泌,而巨噬细胞趋化因子配体2(CCL2)的表达却明显增高。转染CCL2可逆转敲减Twist1后细胞减弱的募集巨噬细胞和血管生成能力。所以该研究者认为,在肿瘤微环境中,癌细胞表达Twist1可以上调CCL2转录,导致CCL2蛋白增加以吸引巨噬细胞,然后促进肿瘤血管生成。还有研究发现,Kindlin-3蛋白能与整合素β1共同作用,通过调节转录因子Twist增加VEGF的分泌,最终促进乳腺肿瘤的血管生成【41】。这些研究结果表明,Twist1与乳腺癌的血管生成有密切的调控关系,也是促进乳腺肿瘤生长和转移的重要机制之一。

  2.6 乳腺癌中Twist的调节

  Twist与乳腺癌的发生、发展密切相关,而参与调节其表达的信号通路是复杂的网络系统,有多个因子、分子参与对其的调节。

  SRC1是激素受体(如ER、PR)及其他转录因子(如ETS2和PEA3等)的共激活因子【42】。通过促细胞分裂原活化蛋白激酶(MAPK)磷酸化Twist1能够增加Twist1蛋白的稳定性,并可促进乳腺癌细胞的侵袭【43】。有关人乳腺浸润性导管癌的研究发现,Twist1蛋白丝氨酸磷酸化的程度与c-Jun氨基末端蛋白激酶(JNK)/MAPK的激活密切相关,并且,JNK/MAPK在PR阴性和HER-2阳性的乳腺癌组织中高表达【44】。这些研究表明,通过多种信号通路激活JNK可使Twist1发生磷酸化进而促进乳腺癌细胞中HER-2的表达【45】。

  此外,微核糖核酸(microRNA,miRNA)在乳腺癌的进展中也具有重要作用。例如:miRNA-10b在转移性乳腺癌细胞中呈高表达,并与肿瘤细胞的迁移、侵袭相关【46】,而miRNA-10b的转录受Twist1直接调控,并且,在原发性乳腺癌中miRNA-10b的表达与肿瘤进展相关;miRNA-373上调低氧诱导因子1α(HIF1α)/Twist轴,可导致乳腺癌细胞发生EMT,从而促进肿瘤转移【47】;miRNA-580可通过抑制Twist1基因的表达,降低乳腺正常上皮细胞MCF-10A成瘤【48】;miRNA-33b可以调节Twist1基因的表达,抑制乳腺癌细胞的侵袭、迁移和干性特征【49】。

  3 结语

  综上所述,Twist在乳腺癌的发生、侵袭、转移以及耐药过程中发挥着独特而重要的作用,但其作用机制仍需要进一步的研究。笔者相信,随着对Twist的深入研究,其有可能成为一个判断乳腺癌预后的重要指标和一个潜在的药物治疗靶点。

参考文献

  1. Moyret-Lalle C, Ruiz E, Puisieux A. Epithelial-mesenchymal transition transcription factors and miRNAs: "Plastic surgeons" of breast cancer. World J Clin Oncol. 2014;5(3):311-322.

  2. Pérez-Solis MA, Maya-Nunez G, Casas-González P, et al. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int. 2016;16:7.

  3. Betts JA, French JD, Brown MA, et al. Long-range transcriptional regulation of breast cancer genes. Genes Chrom Cancer. 2013;52(2):113-125.

  4. Simpson P. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in drosophila embryos. Genetics. 1983;105(3):615-632.

  5. Riaz M, Sieuwerts AM, Look MP, et al. High TWIST1 mRNA expression is associated with poor prognosis in lymph node-negative and estrogen receptor-positive human breast cancer and is co-expressed with stromal as well as ECM related genes. Breast Cancer Res. 2012;14(5):R123.

  6. Xu Y, Hu B, Qin L, et al. SRC-1 and Twist1 expression positively correlates with a poor prognosis in human breast cancer. Int J Biol Sci. 2014;10(4):396-403.

  7. Mao Y, Zhang N, Xu J, et al. Significance of heterogeneous Twist2 expression in human breast cancers. PloS One. 2012;7(10):e48178.

  8. Lim JC, Koh VC, Tan JS, et al. Prognostic significance of epithelial mesenchymal transition proteins Twist and Foxc2 in phyllodes tumours of the breast. Breast Cancer Res Treat. 2015;150(1):19-29.

  9. Ranganathan S, Krishnan A, Sivasithambaram ND. Significance of twist and iNOS expression in human breast carcinoma. Mol Cell Biochem, 2016;412(1/2):41-47.

  10. Zhang YQ, Wei XL, Liang YK, et al. Over-expressed Twist associates with markers of epithelial mesenchymal transition and predicts poor prognosis in breast cancers via ERK and Akt activation. PloS One. 2015;10(8):e0135851.

  11. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927-939.

  12. Ai L, Kim WJ, Alpay M, et al. TRIM29 suppresses TWIST1 and invasive breast cancer behavior. Cancer Res. 2014;74(17):4875-4887.

  13. Chen D, Sun Y, Yuan Y, et al. miR-100 induces epithelial mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10(2):e1004177.

  14. Tran DD, Corsa CA, Biswas H, et al. Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res. 2011;9(12):1644-1657.

  15. Pei XH, Lv XQ, Li HX. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1. Biochem Biophys Res Commun. 2014;446(1):322-327.

  16. Cheng GZ, Zhang WZ, Sun M, et al. Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem. 2008;283(21):14665-14673.

  17. Yang J, Hou Y, Zhou M, et al. Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network. Int J Biochem Cell Biol. 2016;71:62-71.

  18. Shi J, Wang Y, Zeng L, et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 2014;25(2):210-225.

  19. Shi J, Cao J, Zhou BP. Twist-BRD4 complex: potential drug target for basal-like breast cancer. Curr Pharm Des. 2015;21(10):1256-1261.

  20. Zhao D, Besser AH, Wander SA, et al. Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene. 2015;34(43):5447-5459.

  21. Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19(3):372-386.

  22. Cheng GZ, Chan J, Wang Q, et al. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67(5):1979-1987.

  23. Li QQ, Xu JD, Wang WJ, et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res. 2009;15(8):2657-2665.

  24. Pham CG, Bubici C, Zazzeroni F, et al. Upregulation of Twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol. 2007;27(11):3920-3935.

  25. Fu J, Zhang L, He T, et al. TWIST represses estrogen receptor-alpha expression by recruiting the NuRD protein complex in breast cancer cells. Int J Biol Sci. 2012;8(4):522-532.

  26. Vesuna F, Lisok A, Kimble B, et al. Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene. 2012;31(27):3223-3234.

  27. Ma G, He J, Yu Y, et al. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation. Int J Biol Sci. 2015;11(5):618-628.

  28. Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses Twist to induce apoptosis in MCF-7 breast cancer cells. PloS One. 2015;10(10):e0141370.

  29. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-715.

  30. Fang X, Cai Y, Liu J, et al. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 2011;30(47):4707-4720.

  31. Battula VL, Evans KW, Hollier BG, et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010;28(8):1435-1445.

  32. Chanmee T, Ontong P, Mochizuki N, et al. Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of Twist and the transforming growth factor β(TGF-β)-Snail signaling axis. J Biol Chem. 2014;289(38):26038-26056.

  33. Zhou M, Hou Y, Yang G, et al. LncRNA-Hh strengthen cancer stem cells generation in Twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells. 2016;34(1):55-66.

  34. Liang Y, Hu J, Li J, et al. Epigenetic activation of TWIST1 by MTDH promotes cancer stem-like cell traits in breast cancer. Cancer Res. 2015;75(17):3672-3680.

  35. Wang Y, Liu J, Ying X, et al. Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of Hippo pathway. Sci Rep. 2016;6:24606.

  36. Mackey JR, Kerbel RS, Gelmon KA, et al. Controlling angiogenesis in breast cancer: a systematic review of anti-angiogenic trials. Cancer Treat Rev. 2012;38(6):673-688.

  37. Mironchik Y, Winnard PT Jr, Vesuna F, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 2005;65(23):10801-10809.

  38. Hu L, Roth JM, Brooks P, et al. Twist is required for thrombininduced tumor angiogenesis and growth. Cancer Res. 2008;68(11):4296-4302.

  39. Banerjee A, Wu ZS, Qian PX, et al. ARTEMIN promotes de novo angiogenesis in ER negative mammary carcinoma through activation of TWIST1-VEGF-A signalling. PloS One. 2012;7(11):e50098.

  40. Low-Marchelli JM, Ardi VC, Vizcarra EA, et al. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 2013;73(2):662-671.

  41. Sossey-Alaoui K, Pluskota E, Davuluri G, et al. Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J. 2014;28(5):2260-2271.

  42. Xu J, Wu RC, O'Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009;9(9):615-630.

  43. Hong J, Zhou J, Fu J, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71(11):3980-3990.

  44. Firulli AB, Conway SJ. Phosphoregulation of Twist1 provides a mechanism of cell fate control. Curr Med Chem. 2008;15(25):2641-2647.

  45. Kalra J, Sutherland BW, Stratford AL, et al. Suppression of Her2/neu expression through ILK inhibition is regulated by a pathway involving TWIST and YB-1. Oncogene. 2010;29(48):6343-6356.

  46. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682-688.

  47. Chen D, Dang BL, Huang JZ, et al. MiR-373 drives the epithelial-tomesenchymal transition and metastasis via the miR-373-TXNIPHIF1alpha-TWIST signaling axis in breast cancer. Oncotarget. 2015;6(32):32701-32712.

  48. Nairismgi ML, Vislovukh A, Meng Q, et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012;31(47):4960-4966.

  49. Lin Y, Liu AY, Fan C, et al. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1. Sci Rep. 2015;5:9995.

原文参见:中华乳腺病杂志. 2016;10(4):239-242.

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多