分享

​细胞凋亡在乳腺癌治疗中的研究进展

 SIBCS 2020-08-27

赵相轩,温锋,卢再鸣

中国医科大学附属盛

  乳腺癌为中国女性最常见的恶性肿瘤之一,近几十年呈逐渐高发趋势。除早期手术切除以及放化疗等传统方法外,内分泌治疗和靶向治疗已成为分子分型乳腺癌治疗的常规手段。乳腺癌治疗仍然伴随易转移、易复发、易产生抗性和毒副作用大等特点。细胞凋亡阻断是包括乳腺癌在内的恶性肿瘤的最大特征。探讨乳腺癌细胞凋亡信号通路异常分子机制,诱导其重新进入凋亡周期可能是治愈乳腺癌的最根本途径。本文通过对近5年来关键细胞凋亡信号通路在诱导乳腺癌凋亡中的研究进行分析总结,进一步明确这些信号通路在乳腺癌治疗中的作用,以期找到乳腺癌治疗的特异性分子靶点。

通讯作者:卢再鸣(luzm@sj-hospital.org)

原文参见:临床肿瘤学杂志. 2017;22(2):175-179.


  乳腺癌是我国女性发病率第一,致死率第六的恶性肿瘤,近年来发病率呈逐渐递增趋势【1】。细胞凋亡又称细胞程序性死亡,是人体器官清除多余有害细胞的一种防御机制。细胞凋亡机制异常可以导致包括癌症在内的多种疾病的发生。乳腺癌治疗面临最大的问题之一就是癌细胞对各种放化疗诱导的细胞生长抑制和细胞凋亡不敏感或产生抗性。因此,深刻理解关键信号通路分子在乳腺癌细胞凋亡敏感性调节中的作用,找到特异性分子靶点,将为我国乳腺癌细胞凋亡治疗相关药物研发和临床治疗提供有益的线索和思路。

  1 抑癌因子p53

  抑癌因子p53能维持正常人体组织在各种应激损伤条件下基因组的稳定。在人类癌变组织中p53突变或缺失率超过50%【2】。一旦发生突变或缺失,p53通常会转变成致癌因子或失去抑癌功能,促进细胞增殖和凋亡抗性。因此p53状态与癌症发生、发展和治疗关系密切。乳腺癌组织内p53基因突变率约为30%【3】。约40%的乳腺癌组织高表达突变型p53。恢复p53在乳腺癌细胞中的表达,抑制细胞生长和诱导凋亡是治疗乳腺癌最有效的途径之一。云南升麻提取物环菠萝蜜烷三萜能通过上调p53表达同时诱导MCF-7和耐药R-MCR-7细胞的凋亡【4】。溪荪乙醇提取物能诱导MCF-7细胞的Bax、p53蛋白上调和胱天蛋白酶依赖性细胞凋亡【5】。巯基硫酸脲(异脲)衍生物XI-011(0.5μmol/L)能通过抑制MDMX和MDM2以特异性激活p53并诱导MCF-7细胞大量凋亡【6】。克里特法贡木水提取物和褐粘盖牛肝菌甲醇提取物均被证实能强烈上调p53表达而导致MCF-7细胞生长抑制和凋亡【7-8】。马郁兰乙醇提取物能下调突变型p53表达而显著诱导耐药MB231细胞凋亡【9】。L-香芹酮能通过激活p53以特异性诱导MCF-7和MB231细胞凋亡而对正常细胞MCF10A无毒副作用【10】。蛋白酶体抑制剂硼替佐米能上调Card10、Dffb、Traf3和Trp53bp2等蛋白表达而诱导p53缺失型4T1细胞凋亡【11】。顺铂能通过上调p53表达以激活乙酰胆碱酯酶,诱导MCF-7细胞凋亡【12】。二甲双胍能与p53激活剂nutlin-3α和CP/31398联合作用诱导MCF-7和MB231细胞衰老和凋亡【3】。紫色杆菌素能通过抑制MDM2及上调p53和Bax表达以诱导MCF-7细胞凋亡【13】。化合物G613能通过抑制p53-MDM2复合物的形成,提高p53表达而诱导MCF-7细胞凋亡和裸鼠移植瘤生长抑制【14】。未来研究应当更多地关注通过外源基因导入或p53激活剂恢复乳腺癌p53表达并予以抗癌药物联合诱导凋亡。

  2 Bcl-2

  Bcl-2、Bcl-xL和Mcl-1等属于Bcl-2家族抗凋亡蛋白;Bax、Bak和Bim等属于Bcl-2家族促凋亡蛋白。二者的平衡在癌症发生、发展、治疗中发挥重要作用。临床发现约75%的乳腺癌组织高表达Bcl-2【15】。Bcl-2表达高低可以作为乳腺癌化疗敏感性的判断指标【16】。Bcl-2家族蛋白调控细胞凋亡在乳腺癌治疗中发挥关键调控作用。Bcl-2特异性小分子抑制剂ABT737能与顺铂联合作用诱导乳腺癌T47D细胞凋亡【17】。ABT737还能通过抑制Bcl-xL或Mcl-1增敏放射线诱导耐药细胞MB231R凋亡和生长抑制【18-19】。槲皮素(五羟黄酮)和苦参碱可下调Bcl-2和上调Bax蛋白表达而诱导MCF-7细胞凋亡【20-21】。二氢青蒿素可下调Bcl-2和上调Bim蛋白而诱导T47D细胞产生线粒体依赖性凋亡【22】。阿司匹林能诱导Bcl-2发生磷酸化,与FKBP38蛋白形成复合物进入细胞核,诱导MCF-7细胞凋亡【23】。牡荆黄素(VB1)可通过激活细胞内ROS和下调Mcl-1蛋白表达诱导MB231凋亡,而对正常细胞MCF-10A没有毒副作用【24】。他莫昔芬能与HDAC抑制剂PCI-24781联合作用降低Bcl-2表达而诱导他莫昔芬耐药乳腺癌细胞MCF-7凋亡【25】。BH3类似物特异性强,副作用小,能够自由进出细胞,有效中和Bcl-2癌蛋白活性。开展靶向药物BH3类似物如ABT737/199与他莫昔芬等乳腺癌标准治疗药物联合应用的临床试验,将有助于推动Bcl-2凋亡通路在乳腺癌治疗中的应用和进展。

  3 凋亡蛋白抑制因子(IAP)

  主要包括XIAP、cIAP1/2和存活蛋白等,为细胞凋亡的重要调控蛋白。IAP能阻断胱天蛋白酶的激活来抑制细胞凋亡,因此被视为致癌蛋白,目前研究最多的为存活蛋白。约65.3%的乳腺癌组织表现为存活蛋白过表达【26】。乳腺癌恶性标志物HER2、VEGF和uPA升高与存活蛋白过表达有关。存活蛋白过表达与乳腺癌细胞对放化疗不敏感紧密相关。沙利霉素能通过下调存活蛋白表达诱导MCF-7、T47D和MB231周期阻滞和凋亡【27】。丁香油酚(丁香酚)能特异性通过下调存活蛋白表达诱导MCF-7、MDA-MB-231细胞凋亡,而对正常细胞MCV-10A没有明显毒副作用【27】。Wang等【28】报道在细胞内表达双致死性突变体存活蛋白(T34/117A)能够显著诱导乳腺癌细胞B-Cap-37周期阻滞和凋亡,表明存活蛋白对乳腺癌细胞增殖和存活的重要性。D-α-生育酚聚乙二醇琥珀酸酯(TPGS)能特异性下调存活蛋白表达,诱导存活蛋白高表达的MCF-7和MB231细胞凋亡,而对正常存活蛋白低表达细胞系MCF-10A和MCF-12F没有明显毒副作用【29】。茶多酚(维多酚)能通过下调存活蛋白表达,诱导MCF-7和SK-BR-3细胞周期阻滞和凋亡【30】。血小板因子4(PF4)与雷帕霉素联合作用能有效抑制1-甲基-1-亚硝基脲诱导的大鼠乳腺癌生长。免疫组化分析显示,PF4和雷帕霉素可导致肿瘤内存活蛋白表达下调和Bax升高而诱导细胞凋亡【31】。通过外源导入小干扰RNA分子进行存活蛋白基因沉默,能够显著增敏化疗药物紫杉醇或表柔比星,诱导MCF-7细胞凋亡【32】。以YM155为代表的存活蛋白抑制剂联合多西他赛诱导细胞凋亡用于治疗HER2阴性乳腺癌已经进入Ⅱ期临床试验【33】。

  4 微RNA(miRNA、miR)

  miRNA为内源性小分子单链RNA,可通过与mRNA结合调控基因表达。miRNA参与调控血管生成、细胞分化、增殖和凋亡,与乳腺癌发生、诊断和治疗关系密切【34】。乳腺癌相关miRNA约有53条【35】。部分miRNA能够直接调控乳腺癌细胞凋亡。miR26b在乳腺癌组织中显著下调,外源导入miR26b能诱导MCF-7细胞凋亡和生长抑制,miR26b高表达可下调胱氨酸谷氨酸转运蛋白SLC7A11诱导的细胞凋亡【36】。miR200c过表达可特异性抑制XIAP蛋白表达而诱导三阴性乳腺癌细胞MB231凋亡和抑制裸鼠移植瘤生长【37】。miR874过表达能特异性抑制细胞周期蛋白激酶CKD9活性而诱导MCF-7和MB231细胞凋亡【38】。其他能直接调控细胞凋亡的miRNA包括miR125a-5p、miR16、miR204、miR497、miR155、miR21、miR101和miR146a。基于miRNA诱导乳腺癌细胞凋亡的研究显示,miRNA与其他药物联合应用能够增加细胞敏感性或改变其耐药性【35】。如何在肿瘤组织内实现高效、安全、特异性强、持续表达靶分子miRNA仍将是其应用于临床治疗最需解决的问题。

  5 雌激素受体(ER)

  ER是一种膜蛋白或入核蛋白,能够结合雌激素而被激活。乳腺癌组织约有80%表达ER,65%表达孕激素受体(PR)。这是乳腺癌激素治疗的基础。雌激素信号通路阻断诱导细胞凋亡,用于未绝经年轻女性乳腺癌患者。雌激素诱导细胞凋亡治疗乳腺癌通常用于60岁以上的绝经女性患者。雌激素诱导的细胞凋亡治疗或预防乳腺癌取决于女性的绝经状态和雌激素消除持续时间,如绝经5年以上的乳腺癌患者接受雌激素的疗效明显好于绝经5年以下的患者。雌激素既可以诱导内源性细胞凋亡,如激活促凋亡蛋白Bim、Bax、Bak、Noxa、Puma和p53,又可以激活外源性凋亡,如Fas/Fasl和TNF/TNFR通路【39】。蓝莓提取物紫檀芪(蝶芪)能够通过上调ER-α36表达诱导ER-α66阴性乳腺癌细胞MCF-7和MB231凋亡和裸鼠移植瘤生长抑制【40】。植物雌激素包括雌马酚(马醇)、染料木黄酮(金雀黄素)和香豆雌酚(拟雌内酯)等能诱导MCF-7细胞生长抑制和凋亡,这种凋亡作用能被炎症抑制剂地塞米松所阻断【41】。山竺提取物α-倒捻子素(楝子素)能特异性诱导ER阳性MCF-7细胞凋亡,而对ER阴性MB231细胞没有明显毒副作用。α-倒捻子素(楝子素)能通过ER激活Bax和p53促凋亡因子诱导胱天蛋白酶和PARP切割激活【42】。另外薯蓣皂苷、刺芒柄花素(芒柄花黄素)和α-檀香萜醇(白檀油萜醇)等均可以通过ER激活凋亡通路诱导乳腺癌细胞凋亡【43-45】。临床研究表明,约有10%~20%的乳腺癌出现ER、PR和人类表皮生长因子受体2(HER2)三者均缺失。三阴性乳腺癌通常发生于绝经前女性,三阴性乳腺癌对雌激素诱导的细胞凋亡和生长抑制不敏感。学者们对诱导三阴性乳腺癌细胞凋亡也进行了大量研究。木香烯内酯(木香烃内酯、广木香内酯、闭鞘姜酯)能激活Fas/FasL诱导ER阴性MB231细胞凋亡【46】。亚油酸、牛蒡酚(牛蒡子苷配基、牛蒡子甙元、牛蒡子素)、亚油酸、雷洛昔芬和他莫昔芬等均可诱导ER阴性乳腺癌细胞凋亡。ER信号通路在乳腺癌细胞凋亡中的作用仍然不是很清楚,需要进一步深入研究。大剂量雌激素诱导的细胞凋亡能否完全清除癌变细胞?会不会导致细胞抗性和转移?会不会刺激乳腺癌干细胞的生成等问题都是亟待回答的问题。

  6 HER2

  HER2(c-erbB-2、neu)为原癌蛋白,是一种跨膜酪氨酸激酶受体家族成员之一。参与调控细胞存活、增殖和分化。HER2无需专门的配体能与该家族其他受体结合而保持活性状态。乳腺癌中HER2和EGFR(HER-1)多数呈现高表达和持续激活状态。HER2高表达通常预示着乳腺癌进展快和预后不良。阻断HER2信号通路、诱导细胞凋亡和细胞生长抑制已显示出强大的抗肿瘤效果【47】。曲妥珠单抗是美国食品和药品监督管理局(FDA)批准的第一个用于治疗乳腺癌的单克隆抗体。曲妥珠单抗能够阻断HER2自身形成的同源二聚体。帕妥珠单抗为人源化单克隆抗体,能够同时阻断HER2同源和异源二聚体。T-DM1为具有组织特异性的曲妥珠单抗衍生物。拉帕替尼能够同时阻断HER2和EGFR信号通路,功能最为强大,可用于复发和转移晚期乳腺癌【48】。拉帕替尼单独使用即可通过上调Bim表达和抑制存活蛋白活性而诱导SK-BR3、ZR-75-30、BT-474、MB361、MB453和HCC1954等HER2高表达乳腺癌细胞的凋亡【49】。拉帕替尼可激活细胞自噬作用来诱导BT474和AU565细胞凋亡【50】。拉帕替尼能通过抑制Akt激活和降低CIP2A表达诱导三阴性乳腺癌细胞HCC1937、MB468和MB231凋亡【51】。

  7 小结与展望

  尽管乳腺癌治疗取得了长足的进展,但致死率仍居高不下。其发病原因复杂,不同患者可能的诱病机制并不相同,细胞凋亡抗性原因尚不明确。诱导癌变细胞重新进入凋亡途径和周期抑制是各种非手术治疗的基础。对患者进行耐药相关的个性化标志物和敏感性治疗靶点进行筛查,找到最佳治疗方案应该成为临床治疗乳腺癌努力的方向之一。虽然乳腺癌的精准分子靶向治疗处于起步阶段,但是随着基因组测序完成和大数据时代的来临,基础和临床研究应该集中在积极探索关键凋亡信号通路可能的分子靶点药物,进行多靶点联合治疗。

参考文献

  1. Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):279-289.

  2. Qi JS, Wang WH, Li FQ. Combination of interventional adenovirus- p53 introduction and ultrasonic irradiation in the treatment of liver cancer. Oncol Lett. 2015;9(3):1297-1302.

  3. Li P, Zhao M, Parris AB, et al. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. Biochem Biophys Res Commun. 2015;464(4):1267-1274.

  4. Fang ZZ, Nian Y, Li W, et al. Cycloartane triterpenoids from Cimicifuga yunnanensis induce apoptosis of breast cancer cells (MCF7) via p53-dependent mitochondrial signaling pathway. Phytother Res. 2011;25(1):17-24.

  5. Shin JS, Hong SW, Lee JG, et al. An ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. Int J Mol Med. 2011;27(3):401-405.

  6. Wang H, Yan C. A small-molecule p53 activator induces apoptosis through inhibiting MDMX expression in breast cancer cells. Neoplasia. 2011;13(7):611-619.

  7. Vaz JA, Ferreira IC, Tavares C, et al. Suillus collinitus methanolic extract increases p53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem. 2012;135(2):596-602.

  8. Lam M, Carmichael AR, Griffiths HR. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One. 2012;7(6):e40152.

  9. Al DY, Eid A, AbuQamar S, et al. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of survivin and mutant p53. PLoS One. 2013;8(2):e56649.

  10. Patel PB, Thakkar VR. L-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr Cancer. 2014;66(3):453-462.

  11. Yerlikaya A, Okur E, Baykal AT, et al. A proteomic analysis of p53-independent induction of apoptosis by bortezomib in 4T1 breast cancer cell line. J Proteomics. 2015;113:315-325.

  12. Ye X, Zhang C, Chen Y, et al. Upregulation of acetylcholinesterase mediated by p53 contributes to cisplatin-induced apoptosis in human breast cancer cell. J Cancer. 2015;6(1):48-53.

  13. Alshatwi AA, Subash-Babu P, Antonisamy P. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp Toxicol Pathol. 2016;6 8(1):89-97.

  14. Saxena R, Gupta G, Manohar M, et al. Spiro-oxindole derivative 5-chloro-4',5'-diphenyl-3'-(4-(2-(piperidin-1-yl) ethoxy) benzoyl) spiro[indoline-3,2'-pyrrolidin]-2-one triggers apoptosis in breast cancer cells via restoration of p53 function. Int J Biochem Cell Biol. 2016;70:105-117.

  15. Merino D, Lok SW, Visvader JE, et al. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene. 2016;35(15):1877-1887.

  16. Yang D, Chen MB, Wang LQ, et al. Bcl-2 expression predicts sensitivity to chemotherapy in breast cancer: a systematic review and meta-analysis. J Exp Clin Cancer Res. 2013;32:105.

  17. 陈祖锦, 张斌, 潘思虎, 等. ABT-737对顺铂诱导乳腺癌T47D细胞凋亡的增殖作用. 中华肿瘤杂志. 2011;33(12):891-895.

  18. Wu H, Schiff DS, Lin Y, et al. Ionizing radiation sensitizes breast cancer cells to Bcl-2 inhibitor, ABT-737, through regulating Mcl-1. Radiat Res. 2014;182(6):618-625.

  19. Li JY, Li YY, Jin W, et al. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL. J Exp Clin Cancer Res. 2012;31:102.

  20. Duo J, Ying GG, Wang GW, et al. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Rep. 2012;5(6):1453-1456.

  21. Li H, Li X, Bai M, et al. Matrine inhibited proliferation and increased apoptosis in human breast cancer MCF-7 cells via upregulation of Bax and downregulation of Bcl-2. Int J Clin Exp Pathol. 2015;8(11):14793-14799.

  22. Mao H, Gu H, Qu X, et al. Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro. Int J Mol Med. 2013;31(1):213-218.

  23. Choi BH, Chakraborty G, Baek K, et al. Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Exp Mol Med. 2013;45:e47.

  24. Liu LH, Zhou YJ, Ding L, et al. Induction of apoptosis by VB1 in breast cancer cells: the role of reactive oxygen species and Bcl- 2 family proteins. Int J Mol Med. 2014;33(2):423-430.

  25. Raha P, Thomas S, Thurn KT, et al. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res. 2015;17:26.

  26. Jha K, Shukla M, Pandey M. Survivin expression and targeting in breast cancer. Surg Oncol. 2012;21(2):125-131.

  27. Al DY, Attoub S, Arafat K et al. Salinomycin induces apoptosis and senescence in breast cancer: upregulation of p21, downregulation of survivin and histone H3 and H4 hyperacetylation. Biochim Biophys Acta. 2013;1830(4):3121-3135.

  28. Wang L, Kang Y, Zheng W, et al. Effect on apoptosis and cell cycle of recombinant double negative dominant mutation Survivin (T34 /117A) in breast cancer cell B-Cap-37. Biomed Pharmacother. 2014;68(3):277-284.

  29. Neophytou CM, Constantinou C, Papageorgis P, et al. D-alphatocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol. 2014;89(1):31-42.

  30. Chen X, Li Y, Lin Q, et al. Tea polyphenols induced apoptosis of breast cancer cells by suppressing the expression of Survivin. Sci Rep. 2014;4(3):4416.

  31. Al-Astani Tengku Din TA, Shamsuddin SH, et al. Rapamycin and PF4 induce apoptosis by upregulating Bax and downregulating survivin in MNU-induced breast cancer. Asian Pac J Cancer Prev. 2014;15(9):3939-3944.

  32. Dong H, Yao L, Bi W, et al. Combination of survivin siRNA with neoadjuvant chemotherapy enhances apoptosis and reverses drug resistance in breast cancer MCF-7 cells. J Cancer Res Ther. 2015;11(4):717-722.

  33. Clemens MR, Gladkov OA, Gartner E, et al. Phase II, multicenter, open-label, randomized study of YM155 plus docetaxel as first-line treatment in patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 2015;149(1):171-179.

  34. Andorfer CA, Necela BM, Thompson EA, et al. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011;1 7(6):313-319.

  35. Kaboli PJ, Rahmat A, Ismail P, et al. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104-121.

  36. Liu XX, Li XJ, Zhang B, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 2011;585(9):1363-1367.

  37. Ren Y, Han X, Yu K, et al. microRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol Med Rep. 2014;10(1):315-321.

  38. Wang L, Gao W, Hu F, et al. MicroRNA-874 inhibits cell proliferation and induces apoptosis in human breast cancer by targeting CDK9. FEBS Lett. 2014;588(24):4527-4535.

  39. Jordan VC. The new biology of estrogen-induced apoptosis applied to treat and prevent breast cancer. Endocr Relat Cancer. 2015;22(1):1-31.

  40. Pan C, Hu Y, Li J, et al. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer. PLoS One. 2014;9(8):e104459.

  41. Obiorah IE, Fan P, Jordan VC. Breast cancer cell apoptosis with phytoestrogens is dependent on an estrogen-deprived state. Cancer Prev Res (Phila). 2014;7(9):939-949.

  42. Won YS, Lee JH, Kwon SJ, et al. alpha-Mangostin-induced apoptosis is mediated by estrogen receptor alpha in human breast cancer cells. Food Chem Toxicol. 2014;66:158-165.

  43. Chun J, Han L, Xu MY, et al. The induction of apoptosis by a newly synthesized diosgenyl saponin through the suppression of estrogen receptor-alpha in MCF-7 human breast cancer cells. Arch Pharm Res. 2014;37(11):1477-1486.

  44. Santha S, Bommareddy A, Rule B, et al. Antineoplastic effects of α-santalol on estrogen receptor-positive and estrogen receptor-negative breast cancer cells through cell cycle arrest at G2/M phase and induction of apoptosis. PLoS One. 2013;8(2):e56982.

  45. Chen J, Sun L. Formononetin-induced apoptosis by activation of Ras /p38 mitogen-activated protein kinase in estrogen receptorpositive human breast cancer cells. Horm Metab Res. 2012;44(13):943-948.

  46. Choi YK, Seo HS, Choi HS, et al. Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2 /M cell cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231. Mol Cell Biochem. 2012;363(1-2):119-128.

  47. Ambros T, Zeichner SB, Zaravinos J, et al. A retrospective study evaluating a fixed low dose capecitabine monotherapy in women with HER-2 negative metastatic breast cancer. Breast Cancer Res Treat. 2014;146(1):7-14.

  48. Recondo G, Dìaz Canton E, de la Vega M, et al. Therapeutic options for HER-2 positive breast cancer: Perspectives and future directions. World J Clin Oncol. 2014;5(3):440-454.

  49. Tanizaki J, Okamoto I, Fumita S, et al. Roles of BIM induction and survivin downregulation in lapatinib-induced apoptosis in breast cancer cells with HER2 amplification. Oncogene. 2011;30(39):4097-4106.

  50. Zhu X, Wu L, Qiao H, et al. Autophagy stimulates apoptosis in HER2-overexpressing breast cancers treated by lapatinib. J Cell Biochem. 2013;114(12):2643-2653.

  51. Liu CY, Hu MH, Hsu CJ, et al. Lapatinib inhibits CIP2A/ PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget. 2016;7(8):9135-9149.

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多