分享

高盐废水蒸发结晶工艺优化研究

 梵心4466 2020-10-06

高盐废水通常指总溶解性固体物(TDS)质量分数大于3.5%的废水。这类废水除普遍含有大量Cl-、SO42-、Na+等离子形态的无机盐类外,还含有Ca2+、Mg2+、NH4+、HCO3-等易化学变化成垢的离子及化学需氧物(COD)、悬浮物(SS)等杂质。2015年我国高盐废水产生量占总废水量的5%,排放量约为9.975亿t。高盐废水若直接进入水体,会使水体富营养化、藻类迅速繁殖,从而导致水质恶化,鱼类等生物大量死亡。
2007年11月,国家颁布《国家环境保护“十一五”规划》,要求在钢铁、电力、化工、煤炭等重点行业,推广废水循环利用,努力实现废水少排放或零排放。2017年1月,原国家环保部发布《火电厂污染防治技术政策》,鼓励采用蒸发干燥或蒸发结晶等处理工艺,实现脱硫废水不外排。2017年2月,国家能源局发布《煤炭深加工产业示范“十三五”规划》,要求无纳污水体的新建示范项目通过利用结晶分盐等技术,将高盐废水资源化利用。
国内外对高含盐废水“零排放”处理一般采用蒸发塘自然蒸发、多效蒸发结晶、机械蒸汽再压缩蒸发工艺。蒸发塘自然蒸发是利用太阳能自然蒸发的方式蒸发水分,使盐分留在池底定期清理,只有多年平均蒸发量为降雨量的3~5倍以上的区域才能适合。机械蒸汽再压缩蒸发工艺因蒸汽压缩机温升8~10℃,常与降膜蒸发器配套使用,主要用于高盐废水的蒸发浓缩(TDS含量不大于240000mg/L),多效蒸发结晶可针对高盐废水的含盐量和水量变化随时调整蒸汽量,以达到控制蒸发量,因此运行稳定性和操作灵活性上较机械蒸汽再压缩蒸发更有优势。
本研究以煤化工高盐废水为研究对象,通过溶解煤化工企业副产的结晶盐,配置一定浓度的高盐废水,设计蒸发结晶中型试验装置,规模1.5m3/h,分析讨论高盐废水中的Ca2+、Mg2+、NH4+、HCO3-等离子及COD、悬浮物等杂质浓度变化规律及分布特点,为高含盐废水的蒸发结晶及“零排放”技术研究和工程设计提供技术支持。

中型试验


1.原料及进水水质
以煤化工企业副产的结晶盐为原料,配置一定浓度的高盐废水进行蒸发结晶中型试验研究,分析讨论高盐废水中的Ca2+、Mg2+、NH4+、HCO3-、COD、悬浮物等杂质在蒸发结晶过程中的浓度变化及分布状况。高盐废水的各项水质指标如表1所示。
2.试验流程
蒸发结晶工艺采用三效顺流流程,一效采用传热温差损失小、传热速率高的降膜蒸发器,二、三效采用抗盐析、抗结疤堵管能力强的强制循环蒸发器,工艺流程见图1。
1―溶解罐A;2―溶解罐B;3―进料泵;4―一效蒸发器;5―一效分离器;6―一效循环泵;7―二效蒸发器;8―二效分离器;9―二效循环泵;10―三效蒸发器;11―三效分离器;12―三效循环泵;13―出盐泵;14―稠厚器;15―离心机;16―母液罐;17―母液泵;18―间接冷凝器;19―真空泵;20―凉水塔;21―循环水泵;22―产品水泵
如图1所示,溶解罐A中按一定比例加入结晶盐和产品水,通过搅拌溶解,配置成一定浓度的高盐废水,自流到溶解罐B。溶解罐B中的高盐废水经进料泵输送至一效蒸发器,在一效循环泵的作用下进行效内循环,与一效蒸发器壳程新鲜蒸汽间接换热,然后在一效分离器进行汽/液分离:汽相进入二效蒸发器的壳程,液体经一效循环泵输送至二效蒸发器继续浓缩,在二效循环泵的作用下进行效内循环,与二效蒸发器壳程二次蒸汽间接换热后在二效分离器进行汽/液分离:汽相进入三效蒸发器壳程,液体输送至三效蒸发器继续浓缩,在三效循环泵的作用下进行效内循环,与三效蒸发器壳程二次蒸汽间接换热后在三效分离器进行汽/液分离:汽相进入间接冷凝器冷凝,最终浓缩液通过出盐泵输送至稠厚器、经离心机离心分离,得到氯化钠产品盐,离心母液至母液罐,然后经母液泵返回三效分离器继续蒸发浓缩结晶出氯化钠。

结果与分析


1.进水COD、SS浓度的变化规律
现象
如图2所示,随着蒸发结晶过程中水分的不断蒸发,高盐废水COD质量浓度与高盐废水中的含盐量(TDS)成比例增长。当高盐废水达到过饱和浓度,就会析出氯化钠晶体颗粒,三效分离器内晶浆溶液达到15%以上固含量时,经离心机分离氯化钠产品盐后,母液返回三效分离器,这时的COD浓度基本与三效分离器内COD浓度基本一致。进水中约50%的COD会随着蒸汽冷凝水和结晶盐排出系统外,而其余50%含量的COD会随着母液返回蒸发结晶系统内富集。随着蒸发结晶系统内COD不断富集,在高盐废水蒸发表面易产生气泡层,影响蒸发效率,且随着蒸发结晶系统内COD浓度不断提升,所产生的蒸汽冷凝水和结晶盐的COD浓度也会提升,因此需定期将部分母液排出蒸发结晶系统。
高盐废水中的悬浮物(SS)浓度也会随着蒸发结晶过程中水分不断蒸发,与高盐废水中的TDS一样成比例增长。每效分离器内二次蒸汽出口前都设置除沫装置,二次蒸汽夹带的悬浮物大部分被截留在除沫器上,随着除沫器清洗回到蒸发结晶系统内,漂浮在高盐废水蒸发表面,阻碍分离器内水分的蒸发。当出料泵输送三效分离器内晶浆到稠厚器时,虽然稠厚器内设有搅拌器,但大部分悬浮物与结晶颗粒易分层,先离心出结晶盐后出悬浮物,因此容易使离心机筛网堵塞,频繁清洗,造成二次污染。
工艺措施
(1)随着进水中的COD质量浓度增加,蒸汽冷凝水和产品盐的COD质量浓度也会增加,应根据产品水的水质指标和产品盐纯度的要求,控制进水COD质量浓度不大于50mg/L。
(2)随着母液不断循环回蒸发结晶系统,系统内COD、SS不断富集,最终影响三效分离器内的蒸发结晶速率和蒸发结晶系统稳定性,因此应增加母液干燥系统,定期排出一定量母液进行干燥处理。
(3)高盐废水进入蒸发结晶前,应采用臭氧催化氧化等高级氧化工艺去除长链烃,降低COD浓度及色度。
(4)强化预处理,使进水中的悬浮物浓度不大于20mg/L。
2.进水Ca2+、Mg2+的变化规律
现象
HCO3-在常温时与Ca2+、Mg2+形成的Ca(HCO3)2、Mg(HCO3)2为可溶解性无机盐。HCO3-在80℃时可分解为CO32-,即在蒸发结晶的一效蒸发器内被壳程的新鲜蒸汽加热时,超过80℃分解为CO32-,与高盐废水中的Ca2+、Mg2+形成CaCO3、MgCO3沉淀,粘附在降膜蒸发器的换热管内壁。因此高盐废水中若存在HCO3-、CO32-时,应通过加酸调整p H值、设置脱碳塔的方式去除HCO3-、CO32-或定期停车酸洗蒸发器的换热管,以防换热管堵塞。
高盐废水中SO42-与Ca2+形成微溶性CaSO4,随着水分不断蒸发,CaSO4达到过饱和浓度时,以沉淀形式析出,粘附在换热管表面或设备、管道表面,Mg2+溶解度较高,不易沉淀析出,但易与Ca2+形成钙镁结垢,影响传热效果。
如图3(a)所示,随着水分不断蒸发浓缩,高盐废水中Mg2+质量浓度与高盐废水中的TDS一样成比例增长,说明Mg2+在蒸发结晶过程中还是以离子形式存在,而Ca2+、SO42-质量浓度在一效蒸发阶段是按比例增长,但到二效、三效蒸发阶段时Ca2+质量浓度下降明显,SO42-质量浓度也有所下降,说明离子形式存在的Ca2+不断减少,Ca2+以CaSO4形式在二效、三效蒸发器和分离器内沉淀析出。
从图3(b)可知,进水中87%含量的Ca2+沉积在设备或管道内,9%含量的Ca2+随着结晶产品盐排出蒸发结晶系统,剩余基本留在母液,返回蒸发结晶系统;Mg2+溶解度高,进水中56%含量的Mg2+留在母液,返回蒸发结晶系统,42%含量的Mg2+与Ca2+形成混合结垢留在蒸发结晶系统内,在设备或管道表面形成钙镁混合结垢。
工艺措施
(1)Ca2+容易沉积在设备或管道内,应避免Ca2+在降膜蒸发器内达到过饱和状态。
(2)Ca2+、Mg2+的无机盐沉淀,容易堵塞离心机筛网及影响产品盐白度。
(3)通过化学软化和离子交换预处理去除进水中Ca2+、Mg2+硬度。
3.进水NH4+浓度的变化规律
现象
铵盐溶解度高,而NH3的溶解度随着水温的升高而下降,如图4(a)中显示,高盐废水中随着蒸发结晶过程,水分不断蒸发,NH4+以NH3的形式从高盐废水中逸出,随着二次蒸汽到下一效蒸发器的壳程,部分被冷凝水溶解到蒸汽冷凝水,而部分随着乏汽排到大气中。
从图4(b)可知,进水中70%含量的NH4+离子会随着未冷凝的二次蒸汽排放到大气中,30%含量会转移到蒸汽冷凝水中。
工艺措施
(1)进水中的NH4+大部分会排放到大气中,一部分转移到产品水中。
(2)避免NH4+逸出到大气中,可将pH调整在酸性,但与Cl-共存时对设备及管道的材质要求会很高,因此应降低进水中NH4+浓度。
(3)进水中NH4+浓度较高时,需考虑产品水脱氨精制及进一步吸收蒸发结晶乏汽中的NH3。
4.进水TDS的变化规律
现象
调整结晶盐和产品水的比例,分别配置不同TDS质量浓度的高盐废水进行蒸发结晶中型试验。
从图5可知,随着进水中TDS质量浓度增加,单位体积高盐废水所消耗蒸汽量缓慢增加、总的蒸汽量下降幅度大,但TDS浓度越高下降幅度越小。
工艺措施
随着TDS质量浓度增加,相同盐总量条件下,水量减少,运行费用减少、设备投资也减少。因此,高盐废水“零排放”项目中,应尽量提高进蒸发结晶系统高盐废水的TDS质量浓度,浓缩到100000mg/L以上,以降低工程投资和整个“零排放”项目的运行费用。

结论


通过中型试验及数据分析,结合国内“零排放”工程项目的调研,得出如下结论。
(1)蒸发结晶是高盐废水“零排放”项目中工程投资和运行费用最高的单元,应采用高浓缩倍数膜装置将TDS浓缩到100000mg/L以上。
(2)以分盐结晶产品化为目的的“零排放”项目预处理应采用化学软化、离子交换、脱碳塔工艺去除硬度和碱度。
(3)为保证结晶盐的纯度、白度及蒸发结晶系统的稳定运行,高盐废水进入蒸发结晶系统前应设置臭氧催化氧化等高级氧化装置,以降低高盐废水中的COD及色度,COD质量浓度宜控制在不大于50mg/L。
(4)产品水作循环水时,高盐废水进水中的NH4+浓度应控制在不大于15mg/L,若前工段无法通过预处理去除时,应设置产品水精制工段,通过脱氨塔或离子交换去除产品水中的NH4+。
作者:林清武

END

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多