先问大家一个问题:
如果你的回答是1/9,那么恭喜你,你是正常人,点开这篇文章是你正确的选择! 1935年的某一天,物理学家富兰克.本福特(Frank.Benford)在图书馆查阅资料,他在翻阅对数表时,发现对数表的头几页要比后面的页脏一些。 话说聪明的脑袋是一样的,愚笨的脑袋各式各样。牛顿的脑袋被苹果砸中,于是发现了万有引力。本福特也是如此,他拍了一下脑袋,发现了“本福特定律”。 对数表的前几页比后面的脏,这说明有更多的人查阅头几页,这说明以1、2、3开头的数据比7、8、9开头的数据多。 本福特搜集了人口、地理、经济等许多统计数据进一步分析,发现自然数据源,只要样本足够多,数据中以1为打头的数字出现的频率并不是1/9,而是30.1%。以2开头的数字出现的频率是17.6%。往后出现频率依次减少,以9为首的数字出现的频率最低,只有4.6%。
本福特定律的应用条件是:
会计师怎样利用本福特定律呢? 我们知道会计数据是以货币计量的信息,这些从小到大自然累加的数据必然是符合“本福特定律”的。我们通过分析一家公司的财务数据,对照上面的表格,基本可以判断这些财务数据是否经过“人为修饰”。 2001年12月,全球500强中排名第七的安然公司在股价持续下跌的情况下向法庭申请破产,并向美国证监会承认会计造假。 安然事件引起公众对会计数据造假的关注,直接导致了2002年8月《萨班斯法案》的诞生。 事后,有好事者发现安然公司公布的财务数据不符合“本福特定律”,这证明安然公司的高层确实改动过财务数据。 |
|