分享

pandas

 天上飞鸡 2020-12-29

导入数据

import numpy as np
import pandas as pd
df = pd.read_csv('data/table.csv')
df.head()
SchoolClassIDGenderAddressHeightWeightMathPhysics
0S_1C_11101Mstreet_11736334.0A+
1S_1C_11102Fstreet_21927332.5B+
2S_1C_11103Mstreet_21868287.2B+
3S_1C_11104Fstreet_21678180.4B-
4S_1C_11105Fstreet_41596484.8B+

1. 透视表

1. 1 pivot

一般状态下,数据在DataFrame会以压缩(stacked)状态存放,例如上面的Gender,两个类别被叠在一列中,pivot函数可将某一列作为新的cols:

df.pivot(index='ID',columns='Gender',values='Height').head()
GenderFM
ID
1101NaN173.0
1102192.0NaN
1103NaN186.0
1104167.0NaN
1105159.0NaN

然而pivot函数具有很强的局限性,除了功能上较少之外,还不允许values中出现重复的行列索引对(pair),例如下面的语句就会报错:

#df.pivot(index='School',columns='Gender',values='Height').head()

所以我们在这里使用pivot_table

1.2. pivot_table

首先,再现上面的操作:

pd.pivot_table(df,index='ID',columns='Gender',values='Height').head()
GenderFM
ID
1101NaN173.0
1102192.0NaN
1103NaN186.0
1104167.0NaN
1105159.0NaN

由于功能相对更多,速度上是比不上原来的pivot函数的:

%timeit df.pivot(index='ID',columns='Gender',values='Height')
%timeit pd.pivot_table(df,index='ID',columns='Gender',values='Height')
3.74 ms ± 240 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
16.9 ms ± 1.52 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

Pandas中提供了各种选项,下面介绍常用参数:

  1. aggfunc:对组内进行聚合统计,可传入各类函数,默认为’mean’
pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum']).head()
meansum
GenderFMFM
School
S_1173.125000178.71428613851251
S_2173.727273172.00000019111548
  1. margins:汇总边际状态
pd.pivot_table(df,index='School',columns='Gender',values='Height',aggfunc=['mean','sum'],margins=True).head()
#margins_name可以设置名字,默认为'All'
meansum
GenderFMAllFMAll
School
S_1173.125000178.714286175.733333138512512636
S_2173.727273172.000000172.950000191115483459
All173.473684174.937500174.142857329627996095
  1. 行、列、值都可以为多级
pd.pivot_table(df,index=['School','Class'],
               columns=['Gender','Address'],
               values=['Height','Weight'])
HeightHeightHeightHeightHeightHeightHeightHeightHeightHeightHeightHeightWeightWeightWeightWeightWeightWeightWeightWeightWeightWeightWeightWeight
GenderFFFFFFMMMMMMFFFFFFMMMMMM
Addressstreet_1street_2street_4street_5street_6street_7street_1street_2street_4street_5street_6street_7street_1street_2street_4street_5street_6street_7street_1street_2street_4street_5street_6street_7
SchoolClass
S_1C_1179.515917318677646382
S_1C_21761621671881609463636853
S_1C_31751871951611885769706882
S_2C_1159161163.517497617184
S_2C_2188.517515519376.57491100
S_2C_31571641901871717881997388
S_2C_4176175.5166735782

1.3 crosstab(交叉表)

交叉表是一种特殊的透视表,典型的用途如分组统计,如现在想要统计关于街道和性别分组的频数:

pd.crosstab(index=df['Address'],columns=df['Gender'])
GenderFM
Address
street_112
street_242
street_435
street_533
street_651
street_733

交叉表的功能也很强大(但目前还不支持多级分组),一些重要参数:

  1. values和aggfunc:分组对某些数据进行聚合操作,这两个参数必须成对出现
pd.crosstab(index=df['Address'],columns=df['Gender'],
            values=np.random.randint(1,20,df.shape[0]),aggfunc='min')
#默认参数等于如下方法:
#pd.crosstab(index=df['Address'],columns=df['Gender'],values=1,aggfunc='count')
GenderFM
Address
street_1133
street_2164
street_41510
street_517
street_6318
street_741
  1. 除了边际参数margins外,还引入了normalize参数,可选’all’,‘index’,'columns’参数值
pd.crosstab(index=df['Address'],columns=df['Gender'],normalize='all',margins=True)
GenderFMAll
Address
street_10.0285710.0571430.085714
street_20.1142860.0571430.171429
street_40.0857140.1428570.228571
street_50.0857140.0857140.171429
street_60.1428570.0285710.171429
street_70.0857140.0857140.171429
All0.5428570.4571431.000000

2.其他变形方法

2.1. melt

melt函数可以认为是pivot函数的逆操作,将unstacked状态的数据,压缩成stacked,使“宽”的DataFrame变“窄”

df_m = df[['ID','Gender','Math']]
df_m.head()
IDGenderMath
01101M34.0
11102F32.5
21103M87.2
31104F80.4
41105F84.8
df.pivot(index='ID',columns='Gender',values='Math').head()
GenderFM
ID
1101NaN34.0
110232.5NaN
1103NaN87.2
110480.4NaN
110584.8NaN

melt函数中的id_vars表示需要保留的列,value_vars表示需要stack的一组列

pivoted = df.pivot(index='ID',columns='Gender',values='Math')
result = pivoted.reset_index().melt(id_vars=['ID'],value_vars=['F','M'],value_name='Math')                     .dropna().set_index('ID').sort_index()
#检验是否与展开前的df相同,可以分别将这些链式方法的中间步骤展开,看看是什么结果
result.equals(df_m.set_index('ID'))
True

2.2. 压缩与展开

  1. stack:这是最基础的变形函数,总共只有两个参数:level和dropna
df_s = pd.pivot_table(df,index=['Class','ID'],columns='Gender',values=['Height','Weight'])
df_s.groupby('Class').head(2)
HeightWeight
GenderFMFM
ClassID
C_11101NaN173.0NaN63.0
1102192.0NaN73.0NaN
C_21201NaN188.0NaN68.0
1202176.0NaN94.0NaN
C_31301NaN161.0NaN68.0
1302175.0NaN57.0NaN
C_42401192.0NaN62.0NaN
2402NaN166.0NaN82.0
df_stacked = df_s.stack()
df_stacked.groupby('Class').head(2)
HeightWeight
ClassIDGender
C_11101M173.063.0
1102F192.073.0
C_21201M188.068.0
1202F176.094.0
C_31301M161.068.0
1302F175.057.0
C_42401F192.062.0
2402M166.082.0

stack函数可以看做将横向的索引放到纵向,因此功能类似与melt,参数level可指定变化的列索引是哪一层(或哪几层,需要列表)

df_stacked = df_s.stack(0)
df_stacked.groupby('Class').head(2)
GenderFM
ClassID
C_11101HeightNaN
WeightNaN
C_21201HeightNaN
WeightNaN
C_31301HeightNaN
WeightNaN
C_42401Height192.0
Weight62.0
  1. unstack:stack的逆函数,功能上类似于pivot_table
df_stacked.head()
GenderFM
ClassID
C_11101HeightNaN173.0
WeightNaN63.0
1102Height192.0NaN
Weight73.0NaN
1103HeightNaN186.0
result = df_stacked.unstack().swaplevel(1,0,axis=1).sort_index(axis=1)
result.equals(df_s)
#同样在unstack中可以指定level参数
True

3.哑变量与因子化

3.1. Dummy Variable(哑变量)

这里主要介绍get_dummies函数,其功能主要是进行one-hot编码:

df_d = df[['Class','Gender','Weight']]
df_d.head()
ClassGenderWeight
0C_1M63
1C_1F73
2C_1M82
3C_1F81
4C_1F64

现在将上面的表格前两列转化为哑变量,并加入第三列Weight数值

pd.get_dummies(df_d[['Class','Gender']]).join(df_d['Weight']).head()
#可选prefix参数添加前缀,prefix_sep添加分隔符
Class_C_1Class_C_2Class_C_3Class_C_4Gender_FGender_MWeight
010000163
110001073
210000182
310001081
410001064

3.2. factorize方法

该方法主要用于自然数编码,并且缺失值会被记做-1,其中sort参数表示是否排序后赋值

codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b'], sort=True)
display(codes)
display(uniques)
array([ 1, -1,  0,  2,  1], dtype=int32)
array(['a', 'b', 'c'], dtype=object)

5.练习

5.1

  1. 导入数据
df = pd.read_csv('data/Drugs.csv',index_col=['State','COUNTY']).sort_index()
df.head()
YYYYSubstanceNameDrugReports
StateCOUNTY
KYADAIR2010Methadone1
ADAIR2010Hydrocodone6
ADAIR2011Oxycodone4
ADAIR2011Buprenorphine3
ADAIR2011Morphine2
result = pd.pivot_table(df,index=['State','COUNTY','SubstanceName']
                 ,columns='YYYY'
                 ,values='DrugReports',fill_value='-').reset_index().rename_axis(columns={'YYYY':''})
result.head()
StateCOUNTYSubstanceName20102011201220132014201520162017
0KYADAIRBuprenorphine-354275710
1KYADAIRCodeine--1----1
2KYADAIRFentanyl--1-----
3KYADAIRHeroin--12-1-2
4KYADAIRHydrocodone69101097113

现在请将(a)中的结果恢复到原数据表,并通过equal函数检验初始表与新的结果是否一致(返回True)

result_melted = result.melt(id_vars=result.columns[:3],value_vars=result.columns[-8:]
                ,var_name='YYYY',value_name='DrugReports').query('DrugReports != "-"')
result2 = result_melted.sort_values(by=['State','COUNTY','YYYY'
                                    ,'SubstanceName']).reset_index().drop(columns='index')
#下面其实无关紧要,只是交换两个列再改一下类型(因为‘-’所以type变成object了)
cols = list(result2.columns)
a, b = cols.index('SubstanceName'), cols.index('YYYY')
cols[b], cols[a] = cols[a], cols[b]
result2 = result2[cols].astype({'DrugReports':'int','YYYY':'int'})
result2.head()
StateCOUNTYYYYYSubstanceNameDrugReports
0KYADAIR2010Hydrocodone6
1KYADAIR2010Methadone1
2KYADAIR2011Buprenorphine3
3KYADAIR2011Hydrocodone9
4KYADAIR2011Morphine2
df_tidy = df.reset_index().sort_values(by=result2.columns[:4].tolist()).reset_index().drop(columns='index')
df_tidy.head()
StateCOUNTYYYYYSubstanceNameDrugReports
0KYADAIR2010Hydrocodone6
1KYADAIR2010Methadone1
2KYADAIR2011Buprenorphine3
3KYADAIR2011Hydrocodone9
4KYADAIR2011Morphine2
df_tidy.equals(result2)
True

5.2
现有一份关于某地区地震情况的数据集,请解决如下问题

pd.read_csv('data/Earthquake.csv').head()
日期时间维度经度方向距离深度烈度
02003.05.2012:17:44 AM39.0440.38west0.110.00.0
12007.08.0112:03:08 AM40.7930.09west0.15.24.0
21978.05.0712:41:37 AM38.5827.61south_west0.10.00.0
31997.03.2212:31:45 AM39.4736.44south_west0.110.00.0
42000.04.0212:57:38 AM40.8030.24south_west0.17.00.0
  1. 将数据表转化成如下形态,将方向列展开,并将距离、深度和烈度三个属性压缩:
df = pd.read_csv('data/Earthquake.csv')
df = df.sort_values(by=df.columns.tolist()[:3]).sort_index(axis=1).reset_index().drop(columns='index')
df.head()
方向日期时间深度烈度经度维度距离
0south_east1912.08.0912:29:00 AM16.06.727.240.64.3
1south_west1912.08.1012:23:00 AM15.06.027.140.62.0
2south_west1912.08.1012:30:00 AM15.05.227.140.62.0
3south_east1912.08.1112:19:04 AM30.04.927.240.64.3
4south_west1912.08.1112:20:00 AM15.04.527.140.62.0
result = pd.pivot_table(df,index=['日期','时间','维度','经度']
            ,columns='方向'
            ,values=['烈度','深度','距离'],fill_value='-').stack(level=0).rename_axis(index={None:'地震参数'})
result.head(6)
方向eastnorthnorth_eastnorth_westsouthsouth_eastsouth_westwest
日期时间维度经度地震参数
1912.08.0912:29:00 AM40.627.2深度-----16--
烈度-----6.7--
距离-----4.3--
1912.08.1012:23:00 AM40.627.1深度------15-
烈度------6-
距离------2-
  1. 将(a)中的结果恢复到原数据表,并通过equal函数检验初始表与新的结果是否一致(返回True)
df_result = result.unstack().stack(0)[(~(result.unstack().stack(0)=='-')).any(1)].reset_index()
df_result.columns.name=None
df_result = df_result.sort_index(axis=1).astype({'深度':'float64','烈度':'float64','距离':'float64'})
df_result.head()
方向日期时间深度烈度经度维度距离
0south_east1912.08.0912:29:00 AM16.06.727.240.64.3
1south_west1912.08.1012:23:00 AM15.06.027.140.62.0
2south_west1912.08.1012:30:00 AM15.05.227.140.62.0
3south_east1912.08.1112:19:04 AM30.04.927.240.64.3
4south_west1912.08.1112:20:00 AM15.04.527.140.62.0
df_result.astype({'深度':'float64','烈度':'float64','距离':'float64'},copy=False).dtypes
方向     object
日期     object
时间     object
深度    float64
烈度    float64
经度    float64
维度    float64
距离    float64
dtype: object
df.equals(df_result)
True

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多