子孙满堂康复师 / 新奇特药店 / Insilico Medicine全球首次利用人工智能发...

分享

   

Insilico Medicine全球首次利用人工智能发现新机制特发性肺纤维化药物

2021-02-24  子孙满堂...
--Insilico在临床前候选药物选择方面突破刷新了速度和最低成本的纪录—大大加快和推进临床前开发,同时节约了数百万美元的药物开发成本。
 
香港,上海— Insilico Medicine在人工智能和新药开发方面取得突破—首次将生物学和化学生成学相结合,发现一种全新机制的用于治疗特发性肺纤维化(IPF)的临床候选新药,并成功通过多次人类细胞和动物模型实验验证。IPF牵涉多种疾病,影响多个器官(肺、肝和肾),这一新药的出现有望解决影响全球成千上万人的广泛的未被满足的医疗需求。
 
IPF病因至今未明,医学界尚不清楚其发病机制,且该病多为散发,患者从出现症状到死亡,平均存活年限不超过5年。
 
广泛的肺纤维化容易并发肺癌,晚期也会出现肺动脉高压。现用于治疗IPF的药物已在临床使用30多年,仅对10%~30%的病人有疗效。患者在疾病晚期靠氧疗提高生存质量,但情况不容乐观。
 
Insilico Medicine创始人兼首席执行官Alex Zhavoronkov博士表示:“将正确的药物靶点与正确的疾病联系起来是药物研发的最大挑战”,“随着今天我们实现第一个人工智能发现和科学验证临床前候选药物(PCC)的里程碑,Insilico攻克了药物发现中的又一大障碍,并突破了传统药物发现过程中的另一瓶颈,这一过程花费了非常少的成本和时间。”
 
AI改写药物发现的历史
 
从靶点发现到临床前候选药物的发明,Insilico仅用时不到18个月,就实现了靶点发现、分子生成和通过传统实验验证,动物体内IPF疗效确认及安全性评估,总成本约为180万美元,其他纤维化疾病疗效研究总成本约为80万美元,合成和测试了不超过80个小分子化合物
 
传统的药物发现首先是对数万个小分子进行测试筛选,然后进一步合成和测试数百个分子,以便得到少数几个适合临床前研究的候选药物,其中只有大约1/10的候选药物能够最终通过人类患者的临床试验。整个过程缓慢且成本昂贵,平均耗时10年,花费十数亿美元。
 
另一个进一步阻碍新药推向市场的障碍是,整个研发过程涉及的大量研发步骤—每一阶段花费数百至数千万美元—往往是由药物研发行业中不同公司或不同的业务部门分散进行的。
 
Zhavoronkov博士表示:“我们正在改写药物发现的历史,成为首个、也是唯一一个以人工智能为驱动的药物发现集成系统的开创者和领导者”,“通过创建首个通用系统,将药物开发的所有领域从靶点发现、小分子化合物设计以及将来的临床试验结果预测联系起来,Insilico的人工智能平台将能够支持药物研发的每一阶段的发展。”
 
AI如何发现新机制特发性肺纤维化药物
 
Insilico Medicine从通过人工智能发现的20个与纤维化相关的全新潜在靶点开始研究,将适应症范围逐步缩小到专门针对IPF的一个新靶点。
 
靶点确定后,Insilico通过人工智能化学生成系统设计了一组新的化合物来选择性地抑制这个新靶点。这些分子必须具备良好的选择性、生物利用度、代谢稳定性、口服给药性质、安全性,及药物特有的多个优质属性。这些分子最初是由公司的生成化学人工智能系统Chemistry42其中的基于结构的分子设计算法产生的,并且显示在细胞实验和动物模型实验的有效性。
 
这些实验数据随后反馈给人工智能系统,人工智能再次设计新一批的化合物优化活性及成药性,并再次验证。
 
经过数轮设计-合成-评估-优化-重新设计循环后,目前已经确定了临床前候选化合物。Insilico的临床前候选化合物通过了公司内部和外部纤维化疾病领域专家的严格评估,已进入临床前研究阶段。
 
此外,公司还通过人工智能预测此IPF新靶点、新分子的二期临床试验成功机率很高。Insilico目前正在进行IND申报实验,目标是在2022年初进行临床研究。
 
Insilico欢迎和期待与制药公司合作,共同进行II期后的药物开发。
 
尽管围绕新药研发的热门话题通常集中在何时发现新靶点或何时新药进入临床试验,但目前最适合创新和对业务影响最大的领域是从靶点发现到临床开发之间。
 
开创历史的Insilico
 
2019年,Insilico开创了历史,它发明并推出了一种新的用于药物发现的人工智能系统,能够在21天从始至终创造出全新的分子,花费仅约15万美元。由于靶点发现的失败率约为95%,Insilico当时解决了该行业药物发现的最大瓶颈之一。Insilico的人工智能软件以利用现代人工智能技术的生成化学为驱动,能够快速生成具有特定性质的新型分子结构。
 
作为首家探索使用生成性对抗网络(GAN)和生成式强化学习(RL)人工智能技术进行药物发现的公司,Insilico的人工智能软件的成功是向业界展示首次成功发现和生成新的临床候选化合物的科学验证。
 
Zhavoronkov博士发言表示:
 
“深度学习革命的巅峰可以追溯到2014年,那时出现了生成对抗网络,深度学习系统开始在图像识别领域超越人类。同年,公司成立。2016年,我们通过实验验证,深度学习系统可以从组学数据中识别新的生物靶点。自2017年-2019年,我们不断证明,生成式人工智能可以发明和设计在人类细胞和动物体内有活性的新分子。
 
但是还有一个大难题—人工智能能否为一个没有已知的抑制剂、也未在疾病中得到验证的新靶点设计出一种新的分子?现在,我们已经成功地将生物学和化学结合起来,并获得能够作用于一个新的靶点的临床前候选药物提名,目的是将其用于人类临床试验,这是一个亟待解决的、数量级更复杂、风险更大的难题。
 
据我所知,这是首例人工智能成功发现一个新靶点,并设计一个能够作用于大人群疾病适应症的临床前候选新药。这对我们来说是一个重要的里程碑。我们最终的‘登月计划’是解决人类的衰老问题,这需要我们拥有更多更可靠的人工智能技术,帮助我们理解和调控其他慢性疾病中的人类生物学。”
 
此外,Insilico将获得巨额资金支持,用于在多种新药物靶点上开展药物发现和开发。公司已经利用自主研发的Pharma.AI软件,为制药和生物技术公司提供靶点发现和生成化学系统服务和支持。PandaOmics靶点发现AI系统可作为软件服务提供,Chemistry42小分子生成化学平台已于2020年9月开始在药企用户现场安装和部署。迄今为止,全球最先进的制药公司已开始采用我司的Chemistry42分子生成和设计平台,PandaOmics则在多个著名学术机构和制药公司的药物靶点发现部门采用。
 
Insilico同时宣布,公司将继续壮大科研队伍,已经在上海建立了一支由20多位资深药物研发人员组成的团队,由首席科学官(CSO)任峰博士领导,他于今年2月加入Insilico。此前相继担任美迪西生物医药公司生物部和化学部高级副总裁、GSK葛兰素史克公司化学总监。该团队负责将人工智能发现的新药项目推进到临床试验,并创建广泛的临床前/临床药物产品组合。   
 
此新闻稿由Insilico Medicine发布。
查询详情,敬请联络:
周舟 女士          
电子邮件:Subrina.zhou@insilico.ai
 
业界评论、行业现状及其他信息
 
“未来十年,中国将成为全球医药创新的重要力量,中国将在药物的原发性创新上成为引领者和推动者。药物研发是人工智能最重要和最大的应用场景之一,人工智能则是药物研发最重大的技术红利之一。AI赋能药物研发,既能够缩短药物研发的时间,又能够大大降低成本。Insilico不仅仅在技术上是领先的AI辅助药物研发企业,同时,也创造了独特的,充满潜力和希望的商业模式,即通过自主研发的Pharma.AI平台提供人工智能驱动的药物发现服务和软件,以及自主开发临床前项目。”—启明创投主管合伙人梁颕宇,福布斯全球最佳创投人
 
“创新工场投资Insilico Medicine英矽智能,从早期看好公司专注把前沿AI技术与新药研发相结合的创新能力。这次在AI技术平台的支持下,快速研发推进针对特发性肺纤维化病症的潜在的首创药物分子,并成功达到临床前候选药物的里程碑,一定程度上验证了 AI算法结合药物化学与生命科学,能够更高效的研发出有巨大潜力的候选药物分子,在全球范围内是个标志性的里程碑。Insilico Medicine创始人兼首席执行官Alex Zhavoronkov博士带领的团队,结合AI科学家和新药研发科学家,兼具严谨科学方法论及以AI造福人类的愿景,是把AI用于解决真实世界重大挑战的具体实践。” —创新工场董事长兼CEO李开复博士
 
“药物发现中最困难的步骤和最大的谜团之一在于靶点验证,特别是确定在临床环境中有强大影响力的靶点。通过人工智能的努力,Insilico Medicine成功地解决了药物发现中最大的谜团之一。”—新墨西哥大学(University of New Mexico)翻译信息学部门教授兼主任Tudor Oprea博士,一位经验丰富的药物发现者,在药物发现领域拥有25年的行业和学术经验 
 
“在药物研发中,速度就是一切。一种药物批准用于人类使用的相关成本至少有90%是在临床试验的后期阶段。凭借其人工智能驱动的药物发现通用系统,Insilico让研究人员能够在药物发现过程的许多阶段、以及临床试验之前,更快更早地排除失败的方法,以免为时过晚。”—波士顿大学名誉教授Charles Cantor博士,Insilico Medicine科学顾问委员会成员,Sequenom Inc.联合创始人,Retrotope Inc.联合创始人
 
“Insilico Medicine的这一成就再次证明了人工智能是药物发现的强有力工具。通过在药物发现过程中尽可能多的步骤中使用人工智能,可以大大减少有效疗法研发的时间和成本。”—多伦多大学化学和计算机科学教授、人工智能公司Kebotix和Zapata Computing联合创始人Alán Aspuru Guzik博士
 
人工智能用于药物研究的行业现状
 
目前,AI广泛用于化学药物研究,主要用于发现药物靶点,药物筛选、结构优化,以及合成分析:
 
发现药物靶点。AI可以从浩瀚文献中,搜索潜藏的靶点信息,并对比不同靶点信息的潜力,选择潜力较大的靶点进行药物研发。
 
药物筛选和结构优化。针对选中靶点,AI全面利用现有信息,去评估各个候选分子与靶点直接的相互作用能力,筛选出和优化出最适合的分子。
 
确定合成路线。不同于传统的逆合成分析,AI可以在极短时间内,预测出跟药物化学家完美匹配的合成路线。
 
此外,AI还应用于其他化学药物,比如,公开报道显示,在此次新冠疫情中,中国工程院院士李兰娟就利用AI的筛选功能,发现不同已有药物对新冠病毒的有效率,快速完成旧药新用。此外,AI还能使化学药物更快速地进入临床试验、更快速确定疾病诊断标志物等。
 
AI用于药物研发,有广阔的前景,不仅会对制药产业产生深远影响,而且将对化工产业产生广泛影响。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>