前言C# 从 7 版本开始一直到如今的 9 版本,加入了非常多的特性,其中不乏改善性能、增加程序健壮性和代码简洁性、可读性的改进,这里我整理一些使用新版 C# 的时候个人推荐的写法,可能不适用于所有的人,但是还是希望对你们有所帮助。 注意:本指南适用于 .NET 5 或以上版本。 使用 ref struct 做到 0 GCC# 7 开始引入了一种叫做
使用 in 关键字传递不可修改的引用当参数以
在使用大的 使用 stackalloc 在栈上分配连续内存对于部分性能敏感却需要使用少量的连续内存的情况,不必使用数组,而可以通过
使用 Span
|
代码 | 5 | 6 | 7 | 8 | 9 | 总数 | 平均 |
---|---|---|---|---|---|---|---|
代码 1 | 1 | 3 | 4 | 4 | 2 | 14 | 2.8 |
代码 2 | 2 | 3 | 2 | 2 | 3 | 12 | 2.4 |
可以看到使用模式匹配时,编译器选择了更优的比较方案,你在编写的时候无需考虑如何组织判断语句,心智负担降低,并且代码 2 可读性和简洁程度显然比代码 1 更好,有哪些条件分支一目了然。
甚至遇到类似以下的情况时:
int Match(int v)
{
return v switch
{
1 => 5,
2 => 6,
3 => 7,
4 => 8,
_ => 9
};
}
编译器会直接将代码从条件判断语句编译成 switch
语句:
int Match(int v)
{
switch (v)
{
case 1:
return 5;
case 2:
return 6;
case 3:
return 7;
case 4:
return 8;
default:
return 9;
}
}
如此一来所有的判断都不需要比较(因为 switch
可根据 HashCode 直接跳转)。
编译器非常智能地为你选择了最佳的方案。
那鲁棒性从何谈起呢?假设你漏掉了一个分支:
int v = 5;
var x = v switch
{
> 3 => 1,
< 3 => 2
};
此时编译的话,编译器就会警告你漏掉了 v
可能为 3 的情况,帮助减少程序出错的可能性。
最后一点,可读性。
假设你现在有这样的东西:
abstract class Entry { }
class UserEntry : Entry
{
public int UserId { get; set; }
}
class DataEntry : Entry
{
public int DataId { get; set; }
}
class EventEntry : Entry
{
public int EventId { get; set; }
// 如果 CanRead 为 false 则查询的时候直接返回空字符串
public bool CanRead { get; set; }
}
现在有接收类型为 Entry
的参数的一个函数,该函数根据不同类型的 Entry
去数据库查询对应的 Content
,那么只需要写:
string QueryMessage(Entry entry)
{
return entry switch
{
UserEntry u => dbContext1.User.FirstOrDefault(i => i.Id == u.UserId).Content,
DataEntry d => dbContext1.Data.FirstOrDefault(i => i.Id == d.DataId).Content,
EventEntry { EventId: var eventId, CanRead: true } => dbContext1.Event.FirstOrDefault(i => i.Id == eventId).Content,
EventEntry { CanRead: false } => "",
_ => throw new InvalidArgumentException("无效的参数")
};
}
更进一步,假如 Entry.Id
分布在了数据库 1 和 2 中,如果在数据库 1 当中找不到则需要去数据库 2 进行查询,如果 2 也找不到才返回空字符串,由于 C# 的模式匹配支持递归模式,因此只需要这样写:
string QueryMessage(Entry entry)
{
return entry switch
{
UserEntry u => dbContext1.User.FirstOrDefault(i => i.Id == u.UserId) switch
{
null => dbContext2.User.FirstOrDefault(i => i.Id == u.UserId)?.Content ?? "",
var found => found.Content
},
DataEntry d => dbContext1.Data.FirstOrDefault(i => i.Id == d.DataId) switch
{
null => dbContext2.Data.FirstOrDefault(i => i.Id == u.DataId)?.Content ?? "",
var found => found.Content
},
EventEntry { EventId: var eventId, CanRead: true } => dbContext1.Event.FirstOrDefault(i => i.Id == eventId) switch
{
null => dbContext2.Event.FirstOrDefault(i => i.Id == eventId)?.Content ?? "",
var found => found.Content
},
EventEntry { CanRead: false } => "",
_ => throw new InvalidArgumentException("无效的参数")
};
}
就全部搞定了,代码非常简洁,而且数据的流向一眼就能看清楚,就算是没有接触过这部分代码的人看一下模式匹配的过程,也能一眼就立刻掌握各分支的情况,而不需要在一堆的 if-else
当中梳理这段代码到底干了什么。
record
作为 C# 9 的新工具,配合 init
仅可初始化属性,为我们带来了高效的数据交互能力和不可变性。
消除可变性意味着无副作用,一个无副作用的函数无需担心数据同步互斥问题,因此在无锁的并行编程中非常有用。
record Point(int X, int Y);
简单的一句话等价于我们写了如下代码,帮我们解决了 ToString()
格式化输出、基于值的 GetHashCode()
和相等判断等等各种问题:
internal class Point : IEquatable<Point>
{
private readonly int x;
private readonly int y;
protected virtual Type EqualityContract => typeof(Point);
public int X
{
get => x;
set => x = value;
}
public int Y
{
get => y;
set => y = value;
}
public Point(int X, int Y)
{
x = X;
y = Y;
}
public override string ToString()
{
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.Append("Point");
stringBuilder.Append(" { ");
if (PrintMembers(stringBuilder))
{
stringBuilder.Append(" ");
}
stringBuilder.Append("}");
return stringBuilder.ToString();
}
protected virtual bool PrintMembers(StringBuilder builder)
{
builder.Append("X");
builder.Append(" = ");
builder.Append(X.ToString());
builder.Append(", ");
builder.Append("Y");
builder.Append(" = ");
builder.Append(Y.ToString());
return true;
}
public static bool operator !=(Point r1, Point r2)
{
return !(r1 == r2);
}
public static bool operator ==(Point r1, Point r2)
{
if ((object)r1 != r2)
{
if ((object)r1 != null)
{
return r1.Equals(r2);
}
return false;
}
return true;
}
public override int GetHashCode()
{
return (EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + EqualityComparer<int>.Default.GetHashCode(x)) * -1521134295 + EqualityComparer<int>.Default.GetHashCode(y);
}
public override bool Equals(object obj)
{
return Equals(obj as Point);
}
public virtual bool Equals(Point other)
{
if ((object)other != null && EqualityContract == other.EqualityContract && EqualityComparer<int>.Default.Equals(x, other.x))
{
return EqualityComparer<int>.Default.Equals(y, other.y);
}
return false;
}
public virtual Point Clone()
{
return new Point(this);
}
protected Point(Point original)
{
x = original.x;
y = original.y;
}
public void Deconstruct(out int X, out int Y)
{
X = this.X;
Y = this.Y;
}
}
注意到 x
与 y
都是 readonly
的,因此一旦实例创建了就不可变,如果想要变更可以通过 with
创建一份副本,于是这种方式彻底消除了任何的副作用。
var p1 = new Point(1, 2);
var p2 = p1 with { Y = 3 }; // (1, 3)
当然,你也可以自己使用 init
属性表示这个属性只能在初始化时被赋值:
class Point
{
public int X { get; init; }
public int Y { get; init; }
}
这样一来,一旦 Point
被创建,则 X
和 Y
的值就不会被修改了,可以放心地在并行编程模型中使用,而不需要加锁。
var p1 = new Point { X = 1, Y = 2 };
p1.Y = 3; // error
var p2 = p1 with { Y = 3 }; //ok
上面说到了不可变性的重要性,当然,struct
也可以是只读的:
readonly struct Foo
{
public int X { get; set; } // error
}
上面的代码会报错,因为违反了 X
只读的约束。
如果改成:
readonly struct Foo
{
public int X { get; }
}
或
readonly struct Foo
{
public int X { get; init; }
}
则不会存在问题。
Span<T>
本身是一个 readonly ref struct
,通过这样做保证了 Span<T>
里的东西不会被意外的修改,确保不变性和安全。
在使用 Expression<Func<>>
作为参数的 API 时,使用 lambda 表达式是非常正确的,因为编译器会把我们写的 lambda 表达式编译成 Expression Tree,而非直观上的函数委托。
而在单纯只是 Func<>
、Action<>
时,使用 lambda 表达式恐怕不是一个好的决定,因为这样做必定会引入一个新的闭包,造成额外的开销和 GC 压力。从 C# 8 开始,我们可以使用局部函数很好的替换掉 lambda:
int SomeMethod(Func<int, int> fun)
{
if (fun(3) > 3) return 3;
else return fun(5);
}
void Caller()
{
int Foo(int v) => v + 1;
var result = SomeMethod(Foo);
Console.WriteLine(result);
}
以上代码便不会导致一个多余的闭包开销。
我们在遇到 Task<T>
时,大多数情况下只是需要简单的对其进行 await
而已,而并不需要将其保存下来以后再 await
,那么 Task<T>
提供的很多的功能则并没有被使用,反而在高并发下,由于反复分配 Task
导致 GC 压力增加。
这种情况下,我们可以使用 ValueTask<T>
代替 Task<T>
:
ValueTask<int> Foo()
{
return ValueTask.FromResult(1);
}
async ValueTask Caller()
{
await Foo();
}
由于 ValueTask<T>
是值类型结构,因此该对象本身不会在堆上分配内存,于是可以减轻 GC 压力。
如果我们想要把一个类型中的数据提取出来,我们可以选择返回一个元组,其中包含我们需要的数据:
class Foo
{
private int x;
private int y;
public Foo(int x, int y)
{
this.x = x;
this.y = y;
}
public (int, int) Deconstruct()
{
return (x, y);
}
}
class Program
{
static void Bar(Foo v)
{
var (x, y) = v.Deconstruct();
Console.WriteLine($"X = {x}, Y = {y}");
}
}
上述代码会导致一个 ValueTuple<int, int>
的开销,如果我们将代码改成实现解构方法:
class Foo
{
private int x;
private int y;
public Foo(int x, int y)
{
this.x = x;
this.y = y;
}
public void Deconstruct(out int x, out int y)
{
x = this.x;
y = this.y;
}
}
class Program
{
static void Bar(Foo v)
{
var (x, y) = v;
Console.WriteLine($"X = {x}, Y = {y}");
}
}
则不仅省掉了 Deconstruct()
的调用,同时还没有任何的额外开销。你可以看到实现 Deconstruct 函数并不需要让你的类型实现任何的接口,从根本上杜绝了装箱的可能性,这是一种 0 开销抽象。另外,解构函数还能用于做模式匹配,你可以像使用元组一样地使用解构函数(下面代码的意思是,当 x
为 3 时取 y
,否则取 x + y
):
void Bar(Foo v)
{
var result = v switch
{
Foo (3, var y) => y,
Foo (var x, var y) => x + y,
_ => 0
};
Console.WriteLine(result);
}
在项目属性文件 csproj 中启用 null 安全后即可对整个项目的代码启用 null 安全静态分析:
<PropertyGroup>
<Nullable>enable</Nullable>
</PropertyGroup>
这样便可以在编译的时候检查一切潜在的导致 NRE 的问题。例如如下代码:
var list = new List<Entry>();
var value = list.FirstOrDefault(i => i.Id == 3).Value;
Console.WriteLine(value);
list.FirstOrDefault()
可能返回 null
,因此启用 null 安全之后编译器将会给出警告,这有助于避免不必要的 NRE 异常发生。
另外,启用 null 安全之后,对于可空引用类型,也可以通过在类型后加一个 ?
来表示可为 null
:
string? x = null;
在合适的时候使用 C# 的新特性,不但可以提升开发效率,同时还能兼顾代码质量和运行效率的提升。
但是切忌滥用。新特性的引入对于我们写高质量的代码无疑有很大的帮助,但是如果不分时宜地使用,可能会带来反效果。
希望本文能对各位开发者使用新版 C# 时带来一定的帮助,感谢阅读。
|