如图,反比例函数y=3/2x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=k/x的图象上运动,tan∠CAB=2,则关于x的方程x²﹣5x+k=0的解为 . 连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出AE/CF=OE/OF=AO/CO,再由tan∠CAB=OC/OA=2,可得出CFOF的值,把k的值代入方程,求出x的值即可.本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CFOF=6.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.▷▷▷▷▷点我领取学习资料◁◁◁◁◁ 您也可以登陆学习平台↓ 第一中考(www.diyizhongkao.com) ↓点击原文,获取更多学习资料
|