邓斌攸 1 潘云峰 1池志强 1苏真伟 1,2  (1. 广东理工学院机器视觉与智能检测工程技术研究中心,广东肇庆 526100;2. 四川大学机械工程学院,四川成都 610065) DOI:10.12326/j.2096-9694.2020080 摘 要 提出一种家具板件几何尺寸测量机器视觉系统,采用两级成像排除板件的颜色、纹理、图案、标识和表面缺陷等对图像质量的影响,并利用线性聚焦光源、线扫描相机和编码器获取高对比度、轮廓清晰的板件图像。在此基础上,设计图像处理软件、提取出板件的几何要素,进而计算出板件的长度、宽度、对角线等15个尺寸参数。工厂应用测试结果表明,检测系统的速度和重复精度均高于人工测量,在测量误差±0.5 mm范围内,系统测量值与人工测量值的平均吻合度达到95%以上。关键词 板件尺寸测量;图像处理;机器视觉;成像系统目前我国家具制造行业已经进入个性化定制和大规模集成化生产的新阶段。各大型家具公司普遍采用自动化流水线加工各类家具板件,但是其尺寸测量还主要采用人工使用游标卡尺和卷尺抽查方法,主观因素影响大、精度低、速度慢,已经成为家具行业生产自动化的瓶颈问题。近年来,随着CMOS成像技术和数据传输技术的飞速发展,计算机获取和处理图像的能力从每秒几十幅提高到上万幅。机器视觉将人工智能与CMOS成像技术、数据传输技术和计算机技术等结合起来,以非接触的方式每秒获取和处理数千万个图像数据,并在成像识别、缺陷检测和尺寸测量中获得了巨大的成功。Ergün B等[1]将数字近景摄影测量系统应用于工业大尺寸板件的测量,精度达到0.001 mm,但是操作复杂、计算量大、速度慢,难以满足大尺寸板件快速测量的要求。瑞士Baumer公司研制了基于激光三角测量传感器的板件尺寸检测系统,但结构复杂、功能有限、造价太高,难以在国内家具行业推广使用[2]。随着全球加工制造业向中国的转移,国内加紧了板件尺寸检测机器视觉系统的研制。2017年公开了一种基于面阵相机的板件尺寸检测机器视觉系统[3],相机在板件上方移动并对准检测中心后静止拍摄图像,用计算机处理图像并计算各几何要素的尺寸,其主要不足是尺寸检测的精度只有±1 mm,速度慢,且大尺寸板件检测困难。2018年武昌首义学院开发了一种基于机器视觉的通用平面尺寸检测软件系统[4],实现多个尺寸同时测量,但是需要人工提取感兴趣区域,难以实现在线高速的自动化检测。还有一种基于机器视觉的机加工件尺寸测量系统,通过多个图像传感器耦合,对机械零件进行图像采集、处理并将测量结果实时反馈到控制端,实现机械零件的尺寸测量[5],但该系统速度慢,亦难以实现在线高速检测。2019年在“基于机器视觉的大尺寸工件自动测量系统”[6]一文中提出了基于改进随机抽样一致性的亚像素直线/圆弧检测算法,但是该系统只能获取和处理板件的局部图像信息。文献调研表明,迄今为止,国内外在板件视觉测量的成像方法和图像处理等方面取得了一定进展,但是尚没有研制出应用到生产实际的机器视觉系统。笔者研制了一种基于机器视觉的非接触式家具板件尺寸在线测量系统,能以60 m/min的速度在线测量长度240~2 600 mm、宽度140~800 mm、10种典型颜色与纹理的家具板件,其重复检测标准差小于0.05 mm,与人工使用游标卡尺测量结果的吻合度达到95%以上,为家具板件尺寸的机器视觉检测探索新径。 图1 机器视觉系统的结构与工作原理Fig.1 Structure and principle of a machine vision system本机器视觉系统由预检成像系统和二次成像系统两部分组成。预检成像系统由一台近距离拍摄的MGS036-H面阵相机和LED平面阵列光源组成,获取待检测板件的640像素×480像素局部图像。预检系统通过支持向量机识别局部图像的颜色和纹理,判断板件的型号并向成像系统发送成像曝光参数,同时为图像处理设定最佳的二值化阈值。成像系统由高精度线扫描相机LA-CM-16K05A-00-R、LED线性聚焦光源和光栅编码器构成。光栅编码器实时监测待测量家具板件的传输速度,并向线扫描相机发送采样脉冲。线扫描相机以每行16 000像素、每0.05 mm扫描1行的速度连续获取板件的全局图像。对应于宽800 mm、运行速度60 m/min的机器视觉传送带,纵向每0.1 mm有2个像素点;横向每行采样16 000个像素点,即横向每0.1 mm有2个像素点。成像系统的精度保证了系统测量的精度。控制设备选用Intel i7芯片,8G内存,Nvidia GTX1080显卡。工控机实时控制预检系统和成像系统,连续处理图像并计算出板件的几何尺寸,然后显示、输出检测数据。笔者基于机器视觉开发了一种家具板件尺寸测量系统。工厂应用试验表明,该系统能以速度60 m/min、精度±0.5 mm自动在线测量板件的长度、宽度等15个尺寸参数。本研究为板件尺寸手工抽查方式转变为非接触高速在线测量方式探索了新路。下一步的研究重点是提高板件的长度测量精度,进一步降低机器视觉系统的传输随机误差和传送带的累积误差。在此基础上,研发与机器视觉检测相适应的板件自动分拣系统和板件质量全生命周期跟踪系统。引用本文: 邓斌攸,潘云峰,池志强等.基于机器视觉的家具板件尺寸在线测量系统[J].木材科学与技术,2021,35(02):63-67. DENG B Y,PAN Y F,CHI Z Q,et al.A machine Vision System for Measuring Dimensions of Furniture Panels[J].Chinese Journal of Wood Science and Technology,2021,35(02):63-67. 作者简介:邓斌攸,广东理工学院机器视觉与智能检测工程技术研究中心, 讲师。 本刊坚持严谨求实办刊理念,倡导学术争鸣,努力打造为具有国际影响力的国内科技期刊,热忱欢迎专家学者惠赐佳作。
|