南山友 / 数学 / 神奇的乘除法速算法

分享

   

神奇的乘除法速算法

2021-08-28  南山友

大家好!

很高兴在这里又和大家见面了!

上期我们讲了除数为两位数合九的速算法,得到家人及读者的认可。但上期讲的是较简单的一类数的情况,我们这期将加大一点难度!等我们完掌握除数为两位数的合九数,再继续讲除数为四位数的九合数速算法。下面,我们就开始吧!

例44118÷81,速算过程如下:第一位商:44÷9=5余-1,得一位商为5;第二位商:-10+1=-9,-9÷9=-1,5-1=4,得第二位商为4;第三位商:1÷9=0余1,4+0=4,得第三位商为4;第四位商:18÷9=2,2+4=6,得第四位商为0.6。

故44118÷81=544.6。这题,告诉我们,余数可为正,也可为负,如果按照任何数试商余数都要求为正,那么速算变得较为麻烦。固也失去了速算的本义!所以,速算法,要根据不同类型的数运用相应的方法与技巧,千不可千篇一律!

这期就讲到这里,希望大家喜欢!

感谢家人的支持,及广大读者的观看

神奇的乘除法速算法

,我们下期再见!

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>