分享

四川大学文晓刚课题组--氟化辅助脱合金合成的多孔还原氧化石墨烯-FeF2@碳用于高性能锂离子电池及其电化学机理探索

 石墨烯研究 2021-08-31

FeF2理论容量高、成本低,在下一代锂离子电池中具有巨大的应用潜力。然而,其导电性差,充放电过程中体积变化剧烈,限制了其实际应用。为了最大限度地提高可用的电化学性能,一种新型多孔还原氧化石墨烯-FeF2@ (rGO-FeF2@C) 复合材料通过脱合金方法成功合成,具有 430 mAh g-1 的高可逆容量,即使在0.08 A g-1循环 50 次后仍保持 400 mAh g-1 0.08 A g-1 1.00 A g-1范围内也表现出优异的倍率性能。结果表明,这种结构和方法是实现 FeF2 阴极良好性能的有效策略。观察到一种新现象,即较低的充电电压会引起较高的放电平台,并提出了可能的假设。

 Figure 1. Fe-Si合金粉末的SEM图像:(a)球磨前和(b)球磨后,(c) P-FeF2500°C下获得,(d) Fe-SiPVDFGO的混合聚集体,(ef) 500 °C下获得的rGO-FeF2@C(g) 碳包覆的多孔FeF2SEM图像和相应的EDS元素映射:(h) Fe(i) F( j) C (k) N(lm) rGO-FeF2@CTEM图像。(n) rGO-FeF2@CHRTEM图像和相应的 (o) SEAD图案。

Figure 2. (a) rGO-FeF2@C0.08 A g-1电流密度下的循环性能。(b) rGO-FeF2@C0.08 A g-1 的电流密度和 4.0-1.0 V 电压范围下的 GCD 曲线。(c) rGO-FeF2@C在不同电流下的放电容量和库仑效率。在不同 (d) 温度和 (e) 碳源条件下,合成的阴极的放电容量和循环性能比较。(f) rGO-FeF2@CrGO-FeF2@gluC的奈奎斯特图。(g) FeF2  PVDF-C Glu-C 之间的键合示意图。(h) rGO-FeF2@CrGO-FeF2@gluC F 1s 的高分辨率 XPS 光谱。

Figure 3. (a) rGO-FeF2@C在不同扫描速率下的 CV 曲线。(b) 氧化还原峰值电流与扫描速率平方根之间的拟合线性。(c) rGO-FeF2@C总电流(橙色实线)和电容电流(阴影部分)的CV 曲线。(d) 不同扫描速率下电容和扩散控制的电容贡献百分比。(e) 在第一条放电曲线上标出了不同的状态点。(f)来自放电曲线的各种放电状态的奈奎斯特图。(g) 低频部分 Z' ω−1/2 的线性关系。(h) 第一次放电/充电过程中的 Warburg 系数(插图:铁插入 LiF 的脱锂过程示意图。)

Figure 4. (a) rGO-FeF2@C在不同扫描速率下 20 次循环后的 CV 曲线。(b) 不同扫描速率下,电容和扩散控制的电容贡献百分比。

Figure 5. (a) rGO-FeF2@C3.5-1.0 V3.0-1.0 V范围内,在15个循环中的恒电流放电-充电曲线。(b) rGO-FeF2@C在初始15个循环中,在3.5-1.0 V3.0-1.0 V范围内的循环性能。(c) 0.08 A g-1 下,从第2次到第20次循环的放电曲线。(d) 来自不同循环的4.0 V 处,电极的XPS光谱。(e) 1次和第10次(放电至1.0 V),电极的XRD图案。(f) rGO-FeF2@C在第一次循环中具有不同充电截止电压的恒电流充放电曲线。(g) 第一次充电不同电压下,电极的非原位 XRD 谱。图 7(f) 的放大区域,电压窗口为 (h) 4.3–1.0 V(i) 4.0–1.0 V( j) 3.5–1.0 V (k) 3.0–1.0 V

相关研究成果于2021年由四川大学文晓刚课题组,发表在Inorg. Chem. Front.DOI: 10.1039/d1qi00273b)上。原文:The fluorination-assisted dealloying synthesis of porous reduced graphene oxide-FeF2@carbon for high-performance lithium-ion battery and the exploration of its electrochemical mechanism

  文晓刚,男,博士,教授,博士生导师。1994于西南师范大学化学系获理学学士学位,1997于中国科学院成都有机所获理学硕士学位,2005在香港科技大学化学系获哲学博士学位。2007-2009年德国马普固体所洪堡学者。2006年进入四川大学材料科学与工程学院,从事纳米材料与技术、纳米材料的应用、纳米器件等方向的研究。近年来获得国家自然科学基金面上项目、教育部新世纪优秀人才支持计划、教育部留学回国人员启动基金、四川省杰出青年基金、四川大学优秀青年学者研究基金等项目的支持。现为四川省学术和技术带头人后备人选,四川省科青联理事,四川省石墨烯产业技术创新联盟理事。担任Nanoscale,J. Mater. Chem., Appl. Surf. Sci.,高等学校化学学报,无机材料学报等杂志审稿人。在包括Angew Chem. Int. Ed.,Nano. Lett.,Adv. Mater.,Small,J. Phys. Chem. B,Appl. Phys. Lett.,Langmuir等国内国际著名期刊上发表论文50余篇。论文SCI引用2500余次。

研究兴趣

纳米材料与技术,纳米材料的应用(能量转换、储存;吸附;传感等领域);新材料开发。

研究方向

1.纳米材料的设计、可控合成、表征、性质研究;

2.纳米材料在能源领域的应用:太阳能电池、锂离子电池、超级电容器、光催化等;

3.纳米吸附材料、气敏材料、复合材料等;

4.纳米器件的形成与测定。

招收纳米材料与技术、材料学博、硕士研究生,欢迎材料、化学、物理等相关专业学生报考。

联系电话:13408561634.

email:wenxg2001@163.com

部分已发表论文

  1. Wu, X.G., Li, B., Wen, X.G.* “Synthesis and Adsorption Properties of Hierarchical Fe3O4@MgAl-LDH Magnetic Microspheres”, J. Nanopart. Res. 2017, 19:131.

  2. Jiang, R., Luo, X.X., Wen, X.G.* “Hydrothermal Synthesis of TiO2(B)Nanowires/CNTs as Anode Material for High Performance Lithium-ion Batteries”, Int. J. Electrochem. Sci., 2016, 11, 9471–9480.

  3. Jiang, R., Zan, R., Zeng J.Y., Wen, X.G.* “Preparation of 3D pompon-like titanate nanotube microspheres and their adsorption properties on cationic dyes”, RSC Adv., 2016, 6, 97899–97906.

  4. Zan, R, Xiao,J.J., Wen, X.G.* “Synthesis of TiO2 Nanorice and Their Improved Dye Sensitized Solar Cells Performance”, J. Mater. Sci.: Mater. El., 2017, 28, 4107-4113.

  5. Lin,S.X., Ge, Q., Cao, Y.R., Qin, W., Wen, X.G.* “Controllable synthesis, characterization and lithiumion battery performance of LiFePO4 nanosheets”, Mater. Express,2016,6(4), 351-356.

  6. Feng, K.Z., Rong, D.Q., Ren, W.A., Wen, X.G.* “Hierarchical flower-like gamma-AlOOH and gamma-Al2O3 microspheres: Synthesis and adsorption properties”, Mater. Express,2015,5(4), 371-375.

  7. Wei, Z. S., Liu, Y., Wang, H., Mei, Z. W., Ye, J. W., Wen, X. G.*, Gu, L., Xie, Y. T. “A Gas-solid Reaction Growth of Dense TiO2 Nanowire Arrays on Ti Foils at Ambient Atmosphere”, J. Nanosci. Nanotechn.2012,12,316-23.

  8. Ren, W.A., Liu, Y., Mei, Z.W., Wen, X.G.*, Wang, S.H., “In(OH)3 and In2O3 Nanorices and Microflowers: Mophology Transformation and Optical Properties”, J.Nanopart. Res. 2013,15:1452.

  9. Mu, J.L., Liu, Y., Wang, H., Ye, J.W., Wen, X.G.*, Gu, L., Xie, Y.T. “Surfactant-Free Hydrothermal Synthesis of Ag/C Nanocables”, Mater. Express, 2012, 2, 130-136.

  10. Gu, L., Sigle,W., Koch, C.T., Ogut,B., van Aken,P.A., Talebi, N., Vogelgesang, R., Mu, J.L., Wen, X.G., Mao, J.“Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets” Phys. Rev. B 2011, 83,195433.

  11. Mei, Z.W., Liu,Y., Wang, H., Gao,S.J., Wen,X.G.*, Gu, L., Qiu, Y.F., Yang,S.H. “Facile and Controllable Growth of ZnO 1D Nanostructure Arrays on Zn Substrate by Hydrothermal Process” J. Nanosci. Nanotechn., 2010, 10, 3123-3130.

  12. Wen,X.G., Xie, Y. T., Mak, M. W. C., Cheung, K. Y., Li, X. Y., Renneberg, R., and Yang, S. H. “Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications”, Langmuir, 2006, 22, 4836-4842

  13. Fang, Y. P., Wen, X. G., Yang, S.H. “Hollow and tin-filled nanotubes of single-crystalline In(OH)(3) grown by a solution-liquid-solid-solid route”, Angew Chem. Int. Ed. 2006, 45, 4655-4658

  14. Fang, Y. P., Pang, Q., Wen, X. G., Wang, B. N., Yang, S.H. “Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate”, Small 2006, 2 (5) 612-615

  15. Dong ,C. L., Mattesini, M., Augustsson, A., Wen, X. G., Zhang, W. X., Yang, S, H,, Persson, C., Ahuja, R., Luning, J., Chang, C. L., Guo, J. H. “Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy”, J. Electron Spectrosc. Relat. Phenom. 2006, 151 (1), 64-70

  16. Fang Y.P., Wen X.G., Yang S.H., Pang Q., Ding L., Wang J.N., Ge W.K.“Hydrothermal synthesis and optical properties of ZnO nanostructured films directly grown from/on zinc substrates”, J. Sol-Gel Sci. Tech. 2005, 36 (2): 227-234

  17. Anandan S., Wen X. G., and Yang S. H. “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells" Mater. Chem. Phys, 2005, 93, 35-40.

  18. Wen, X. G., Fang, Y. P., Pang Q., Yang, C. L., Wang, J. N.; Ge, W. K., Wong, K. S., and Yang, S. H. “ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications”, J. Phys.Chem. B.2005, 109, 15303-15308.

  19. Fan, Z. Y., Wen X. G., Yang, S. H., Lu, J. G. “Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors” Appl. Phys. Lett. 2005, 87, 013113.

  20. Wen, X. G., Fang, Y. P., Yang, S. H. “Ultrathin zinc nanowires and nanotubes grown by vapor transport” Angew Chem. Int. Ed. 2005, 44, 3562-3565.

  21. Wen, X. G., Wang, S. H., Xie, Y. T., Li, X. Y., Yang, S. H. “Template-free and low temperature synthesis of single crystalline Ag2S nanowires on silver substrates” J. Phys. Chem. B 2005, 109, 10100-10106.

  22. Wen, X. G., Xie, Y. T., Choi, C. L., Wan, K. C., Li, X. Y., Yang, S. H. “Copper-based nanowire materials: templated syntheses, characterizations, and Applications” Langmuir, 2005, 21, 4729-4737.

  23. Yang, S. F. Wen, X. G., Zhang, W. X., Yang, S. H. “Photoelectrochemistry of pure and core/sheath nanowire arrays of Cu2S directly grown on copper electrodes” J. Electrochem. Soc. 2005, 152(3), G220-G226

  24. Wen, X. G., Wang, S. H., Ding, Y., Wang, Z. L., Yang, S. H. “Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires” J. Phys. Chem. B 2005, 109, 215-220.

  25. Wang, Z. L., Kong, X. Y., Wen, X. G., Yang, S. H. “In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires”, J. Phys. Chem. B 2003, 107, 8275-8280.

  26. Zhang, W. X., Wen, X. G., Yang, S. H. “Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films”, Inorg. Chem. 2003, 42, 5005-5014.

  27. Wen, X. G., Zhang, W. X., Yang, S. H. “Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface”, Langumuir 2003, 19, 5898-5903.

  28. Zhang, W. X., Wen, X. G., Yang, S. H., Berta, Y., Wang, Z. L. “Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature”, Adv. Mater. 2003, 15, 822.

  29. Wen, X. G., Zhang, W. X., Yang, S. H. “Solution phase synthesis of Cu(OH)2nanoribbons by coordination self-assembly using Cu2S nanowires as precursors”, Nano. Lett. 2002, 2, 1397-1401.

  30. Wen, X. G., Yang, S. H. “Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method” Nano. Lett. 2002, 2, 451-454.

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多