老胡说科学 / 待分类 / 傅里叶变换,有史以来最伟大的数学发现之...

分享

   

傅里叶变换,有史以来最伟大的数学发现之一,理解其背后的直觉

2021-09-19  老胡说科学

傅里叶变换和傅里叶级数是有史以来最伟大的数学发现之一。它们帮助我们将函数分解成其基本成分。它们揭示了任何数学函数的基本模块,并让我们能够使用这些模块,以便更好地理解和运算它们。但是,傅里叶级数和傅里叶变换背后的想法究竟是什么,这些 "基本成分 "又是什么?

基本思想

傅里叶级数和傅里叶变换背后的直觉是相同的。
任何函数都可以写成正弦函数之和。
这个想法很简单,但却非常深刻。
我们在高中时都学过什么是余弦和正弦。它们将直角三角形的一个角度与两个边长的比值联系起来。另一种理解方式是,余弦和正弦分别是围绕单位圆运动的一个点的x和y坐标。它们是人们能想到的最简单的周期函数之一。
  • 正弦和余弦函数的图形
  • 余弦和正弦作为绕单位圆运动的点的坐标
由这两个函数组成的和,可以表示任何数学函数,这一事实让人惊讶。
但是,傅里叶级数和傅里叶变换之间有什么区别呢?
傅里叶级数和傅里叶变换的区别在于,前者用于将周期性函数分解为正弦和余弦之和,而后者则用于非周期性函数。
现在让我们来看看这两者是如何运作的。

傅里叶级数

正如我们所说,傅里叶级数用于周期性函数。回顾一下,如果以下等式成立,一个函数f(t)被称为是周期性的,其最小周期为T。
简单地说,这意味着该函数以长度为T的时间间隔重复其数值。
  • 周期性函数的例子
最后,我们将该周期函数的基本频率定义为1/T,即周期的倒数。如果说周期告诉我们函数重复的频率,那么频率则告诉我们每单位时间有多少次重复。
现在我们有了定义傅里叶级数所需要的一切。
傅里叶级数是正弦函数的无限加权和,每个正弦函数的频率都是原始周期函数的基频(1/T)的整数倍。
傅里叶级数的公式如下:
  • 周期性函数g(t)的傅里叶级数展开
这看起来有点复杂,让我们把它分解一下。

分解

我们从基本周期为T的周期函数g(t)开始,然后将其表示为两个无限和。一个是余弦之和,另一个是正弦之和。这两个和都是加权的,这意味着它们所包含的每个余弦和正弦都有一个系数。在我们的例子中,这些系数分别用符号α_mb_n表示。下标字母m和n是和的计数变量。因此,例如,当m变成1、2、3等时,每个余弦的系数从α_1变成α_2,α_3以此类推。
还有自变量t,它也是初始函数g(t)的自变量;常数2π,它的存在与对称性有关;以及分母中的周期T。你可能已经注意到,我们可以用频率f代替上式中的1/T比率,以避免使用分数。
我们在三角函数中遇到的最后一个符号是每个和的计数变量,m代表余弦,n代表正弦。它的存在所达到的目的是,在无限的和中,每个余弦和正弦将有不同的频率。然而,这些都不是任意的频率。它们是初始函数g(t)的频率的整数倍。
计算系数α_mb_n的公式在下面给出。我们不会多谈它们,因为它们对我们的理解没有帮助。
你现在知道如何将任何周期性函数扩展为余弦和正弦之和。

傅里叶级数的替代形式

在我们进入傅里叶变换之前,我想向你介绍一种替代的,也是等价的傅里叶数列的表示方法。这就是下面的内容。

  • 傅里叶级数的指数形式
虽然它看起来与我们上面讨论的三角函数形式大不相同,但实际上是等价的。我们所做的只是利用欧拉公式(该公式将余弦和正弦与复指数联系起来),以更简洁的形式重写傅里叶级数。现在,我们不再有两个和,而只有一个。
  • 欧拉公式

傅里叶变换

如果你已经理解了我们所说的关于傅里叶级数的一切,那么傅里叶变换就会非常简单了。这一次,我们关注的是非周期性函数。傅里叶变换的公式如下。
  • 傅里叶变换
傅里叶变换的重要性
傅里叶变换的结果是一个频率的函数。希腊字母omega,"ω",是用来表示角频率的,它是乘积2πf的名字。当初始函数f(t)是一个时间函数时,傅里叶变换给了我们该函数的频率内容。
一个时间函数的傅里叶变换是一个频率的复值函数,其大小(绝对值)代表了原始函数中存在的该频率的数量,其参数是该频率的基本正弦波的相位偏移。傅里叶变换不限于时间函数,但原始函数的域通常被称为时域。
我们可以用逆傅里叶变换把初始函数找回来。
  • 傅里叶和逆傅里叶变换

详解

让我们比较一下傅里叶逆变换和傅里叶级数。
首先,我们没有使用余弦和正弦(这将产生两个积分),而是使用一个复指数,以更简洁的方式表示正弦函数。在积分前出现的系数1/2π是为了对称。
我们立即注意到的另一件重要事情是,我们现在有了一个积分,而不是一个离散的 "西格玛 "和。请记住,积分本身就是和,唯一的区别是在积分下被求的量是连续的,而不是离散的。由于初始函数f(t)是非周期性的,我们需要所有可能的频率,从负无穷大到正无穷大来表示它。在傅里叶级数的情况下,我们只使用T的整数倍。由于我们现在没有一个基本周期T,我们被迫使用所有的周期。
对于复指数的系数,我们得到了在每一个可能的频率ω下函数的傅里叶变换的值。正如你所看到的,从傅里叶级数的概念到逆傅里叶变换的概念,有一个明显的一一对应关系。

结束语

正如泰勒级数将一个函数分解为无限的单项式加权和一样,傅里叶级数和傅里叶变换帮助我们将一个周期性函数表示为正弦信号的加权和。正弦信号在数学意义上很容易被运算。如果我们知道一个系统,比如可能是一个有弹簧的经典系统,是如何对正弦波输入作出反应的,那么我们就可以用上述的想法将任何其他输入表示为正弦波之和。因此,很大一部分分析已经完成,数学运算也变得容易多了。由于这个原因,傅里叶级数以及傅里叶变换在所有科学领域都有大量的应用,如电子工程、物理和生物。



    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多
    喜欢该文的人也喜欢 更多

    ×
    ×

    ¥.00

    微信或支付宝扫码支付:

    开通即同意《个图VIP服务协议》

    全部>>