发文章
发文工具
撰写
网文摘手
文档
视频
思维导图
随笔
相册
原创同步助手
其他工具
图片转文字
文件清理
AI助手
留言交流
DL之VGG16:基于VGG16(Keras)利用Knifey-Spoony数据集对网络架构FineTuning
False: input_1 False: block1_conv1 False: block1_conv2 False: block1_pool False: block2_conv1 False: block2_conv2 False: block2_pool False: block3_conv1 False: block3_conv2 False: block3_conv3 False: block3_pool True: block4_conv1 True: block4_conv2 True: block4_conv3 True: block4_pool True: block5_conv1 True: block5_conv2 True: block5_conv3 True: block5_pool Epoch 1/20 100/100 [==============================] - 814s 8s/step - loss: 0.4626 - categorical_accuracy: 0.8095 - val_loss: 0.5332 - val_categorical_accuracy: 0.7717 Epoch 2/20 100/100 [==============================] - 823s 8s/step - loss: 0.4662 - categorical_accuracy: 0.8150 - val_loss: 0.5236 - val_categorical_accuracy: 0.7755 Epoch 3/20 100/100 [==============================] - 824s 8s/step - loss: 0.4506 - categorical_accuracy: 0.8140 - val_loss: 0.5153 - val_categorical_accuracy: 0.7830 Epoch 4/20 100/100 [==============================] - 821s 8s/step - loss: 0.4491 - categorical_accuracy: 0.8170 - val_loss: 0.5236 - val_categorical_accuracy: 0.7717 Epoch 5/20 100/100 [==============================] - 820s 8s/step - loss: 0.4612 - categorical_accuracy: 0.8150 - val_loss: 0.5244 - val_categorical_accuracy: 0.7698 Epoch 6/20 100/100 [==============================] - 824s 8s/step - loss: 0.4440 - categorical_accuracy: 0.8215 - val_loss: 0.5078 - val_categorical_accuracy: 0.7849 Epoch 7/20 100/100 [==============================] - 824s 8s/step - loss: 0.4339 - categorical_accuracy: 0.8200 - val_loss: 0.5070 - val_categorical_accuracy: 0.7906 Epoch 8/20 100/100 [==============================] - 820s 8s/step - loss: 0.4188 - categorical_accuracy: 0.8335 - val_loss: 0.5068 - val_categorical_accuracy: 0.7887 Epoch 9/20 100/100 [==============================] - 823s 8s/step - loss: 0.4307 - categorical_accuracy: 0.8345 - val_loss: 0.5192 - val_categorical_accuracy: 0.7792 Epoch 10/20 100/100 [==============================] - 820s 8s/step - loss: 0.4432 - categorical_accuracy: 0.8180 - val_loss: 0.4945 - val_categorical_accuracy: 0.7887 Epoch 11/20 100/100 [==============================] - 824s 8s/step - loss: 0.4171 - categorical_accuracy: 0.8295 - val_loss: 0.5012 - val_categorical_accuracy: 0.7887 Epoch 12/20 100/100 [==============================] - 820s 8s/step - loss: 0.4071 - categorical_accuracy: 0.8335 - val_loss: 0.5064 - val_categorical_accuracy: 0.7830 Epoch 13/20 100/100 [==============================] - 824s 8s/step - loss: 0.4164 - categorical_accuracy: 0.8200 - val_loss: 0.5065 - val_categorical_accuracy: 0.7811 Epoch 14/20 100/100 [==============================] - 825s 8s/step - loss: 0.4060 - categorical_accuracy: 0.8350 - val_loss: 0.5021 - val_categorical_accuracy: 0.7830 Epoch 15/20 100/100 [==============================] - 821s 8s/step - loss: 0.3948 - categorical_accuracy: 0.8390 - val_loss: 0.4985 - val_categorical_accuracy: 0.7925 Epoch 16/20 100/100 [==============================] - 824s 8s/step - loss: 0.3724 - categorical_accuracy: 0.8570 - val_loss: 0.4909 - val_categorical_accuracy: 0.7981 Epoch 17/20 100/100 [==============================] - 821s 8s/step - loss: 0.4084 - categorical_accuracy: 0.8305 - val_loss: 0.4888 - val_categorical_accuracy: 0.8000 Epoch 18/20 100/100 [==============================] - 824s 8s/step - loss: 0.3975 - categorical_accuracy: 0.8400 - val_loss: 0.4907 - val_categorical_accuracy: 0.8019 Epoch 19/20 100/100 [==============================] - 822s 8s/step - loss: 0.4093 - categorical_accuracy: 0.8430 - val_loss: 0.5156 - val_categorical_accuracy: 0.7792 Epoch 20/20 100/100 [==============================] - 824s 8s/step - loss: 0.4007 - categorical_accuracy: 0.8270 - val_loss: 0.4917 - val_categorical_accuracy: 0.7962
conv_model.trainable = True for layer in conv_model.layers: # Boolean whether this layer is trainable. trainable = ('block5' in layer.name or 'block4' in layer.name) # Set the layer's bool. layer.trainable = trainable print_layer_trainable() optimizer_fine = Adam(lr=1e-7) FT_history = VGG16_TL_model.fit_generator(generator=generator_train, epochs=epochs, steps_per_epoch=steps_per_epoch, class_weight=class_weight, validation_data=generator_test, validation_steps=steps_test) print(FT_history) plot_training_history(FT_history) # VGG16_FT_model_result = VGG16_TL_model.evaluate_generator(generator_test, steps=steps_test) print("Test-set classification accuracy: {0:.2%}".format(VGG16_FT_model_result[1])) example_errors()
来自: 处女座的程序猿 > 《待分类》
0条评论
发表
请遵守用户 评论公约
卷积降维与池化降维的对比分析
x = torch.relu(self.conv1(x)) # x = self.max_pool1(x) x = torch.relu(self.conv2(x)) # x = self.max_pool2(x) # x...
Guoqing Xu VGG
如何用卷积神经网络CNN识别手写数字集?
手把手教你用 PyTorch 快速准确地建立神经网络
手把手教你用 PyTorch 快速准确地建立神经网络。print (''''''''Epoch:'''''''', epoch, ''''''''...
矿渣P104-100魔改8G,机器学习再就业
P104每个Epoch用时3s 58,2070 SUPER每个Epoch用时几乎7s。25000/25000 [==============================] - 7s 286us/step - loss:0.11...
TF2.0 XLA加速测试
TF2.0 XLA加速测试TF2.0 XLA加速测试。SparseCategoricalAccuracy(''''''''accuracy'''''''')model.compile(optimizer=optimizer, l...
矿渣P104
看了K40、K80等计算卡,参考nvidia官网GPU Compute Capability,最后因为垃圾佬的本性就在黄鱼捡了一块矿卡P104-100(号称是矿版1070,C...
[Python深度学习]kaggle猫狗大战
mkdir(validation_cats_dir)validation_dogs_dir = os.plot(epochs, val_loss, ''''''''r''...
医生再添新助手!深度学习诊断传染病
vgg = tf.keras.applications.vgg19.import model_evaluation_utils as meuimport pandas as pdbasic_cnn_metrics = meu.get_metrics(tr...
微信扫码,在手机上查看选中内容