分享

一体化伺服电机PID的整定(伺服增益调整)

 myallmy 2021-10-24

来源:立迈胜
大部分伺服电机在空载情况下具备良好的功能特性,但一旦负载运行时表现出的“性能”却差强人意,这主要是因为伺服电机在受到机械传动系统反作用力扰动时无法作出合理的响应而造成的。
 
当伺服电机接入设备机械系统获得的反馈偏差(速度偏差、位置偏差、扭矩偏差等)常常是夹杂很多扰动的,如:机械谐振、响应迟滞、传动间隙、机械连接方式等,伺服电机需要能够将这些不同类型的偏差和扰动区分开来,有针对性的对各种不同类型的运动反馈做出相应的合适的响应,这样设备才能达到最佳性能。

所以几乎所有的伺服系统,都需要在较高的惯量比、高动态性能的预期及柔性机械联接这几个方面相互平衡、折中、妥协,而在任何系统中,以上这三点都是无法同时做到的。

Image
惯量比与系统刚性和动态性能之间的关系图

例如要让一个惯量比达到100:1或者更高的系统运转起来,如果系统刚性不佳,此时就需要降低系统响应频率(即增益值),即在性能上妥协;或者我们仍然需要有较高的动态特性,那么就不能允许在电机和负载之间有任何间隙和柔性的联接。
 
合适的惯量比主要取决于运动曲线有多么“激进”以及机械传动有多“硬”,不同的动态特性预期和传动刚性的差异,决定了特定运控系统所“适合”的惯量比。
 
一些速度较慢或者基本保持恒速运行的应用,如分度转台等,对惯量比要求并不苛刻,基本不要求个位数的惯量比,如果采用较好的刚性机械传动(如直接驱动电机),惯量比达到几百甚至上千有时也是可以接受的。
 
但对于那些高动态、高精度应用,比如:印刷的套准同步、三角机器人的高速抓取等,即使采用极佳的刚性传动,也不敢使用较大的惯量比(有时 10 都已经很大了);而如果传动刚性不足,那么可能 1:1 的惯量比都大了。
 
正如惯量比与系统刚性和动态性能之间的关系图中所示,基于不同的动态和精度性能,根据不同的传动机构类型所带来系统刚性差异,可能的惯量比匹配范围还是很大的,是需要在实际具体的运控应用中,区别对待,具体情况,具体分析的。

伺服PID整定的增益切换

一般应用场景:伺服锁轴增益和运行增益不一样。电机运行状态切换到较高增益,以获得更好的指令跟踪性能;电机静止(伺服使能)状态切换到较低增益,以抑制振动。增益切换的切换条件:根据增益切换模式选择(2009h:08h),具体切换条件如下:

0 ~固定使用第一组增益;
1 ~使用外部DI切换,DI无效为第1增益,DI有效为第2增益;
2~转矩指令,转矩指令的绝对值超过(等级+时滞)[%]的状态在延迟时间期间内持续时,切换到第二增益;转矩指令的绝对值不到(等级-时滞)[%]的状态在延迟时间的期间内持续时,返回到第一增益;
3 ~内部生效的速度指令值(606Bh)25ms维持不变固定使用第1增益,变化使用第2增益;
4 ~速度指令变化率,单位rpm/ms;
5 ~速度指令,单位rpm;
6 ~位置偏差,编码器单位
7 ~位置指令,位置偏指令不为0的状态在延迟时间期间内持续时,切换到第二增益;位置指令为0的状态在延迟时间的期间内持续时,返回到第一增益;
8 ~定位完成,定位未完成的状态在延迟时间期间内持续时,切换到第一增益;定位完成的状态在延迟时间的期间内持续时,返回到第二增益;除位置控制模式外,其余固定为第二增益;
9~实际速度,单位rpm

一体化伺服电机PID的整定流程和判断依据

Image

一体化低压伺服电机由三个控制环路构成,从内向外依次是电流环、速度环和位置环,电流环的响应频率最高。伺服电机出厂默认电流环增益参数已确保了充分的响应性,一般无需调整,因此需要调整的有位置环增益、速度环增益、速度环积分时间常数、速度前馈、速度前馈滤波时间常数及转矩指令滤波时间常数。为保证系统稳定,提高位置环增益的同时,需提高速度环增益。

伺服PID整定的流程

1. 设定合适的转动惯量比
2.设定速度环积分时间常数为0
3.加大速度环增益,如果机械振动,稍许调小
4.先设定速度环积分时间常数为较大值,逐渐减小速度环积分时间常数,如果机械振动,稍许调大
5.增大位置环增益,如果机械振动,稍许调小
6.如果因为机械系统发生共振而无法加大增益,进而无法得到应有的伺服应用要求,可以对转矩低通滤波器或陷波器调整抑制机械系统共振;然后重新操作以上步骤以提高伺服性
7.若需要更短的定位时间和更小的位置跟踪误差,可适当增加速度前馈,即速度前馈增益,但不宜超过80%

伺服PID整定的判断依据

1.伺服使能,用户手动正反转确定运行范围(建议最小半圈),然后确定运行方向(正-负,负-正,正-正,负-负)、移动量(1/2/4圈等),最大速度,加减速(1000/2000/4000rpm/s等)等。如果运行方向是单一方向,运行范围失效。
2.点击开始按钮,电机按设定的运行方向和移动量运动,停止间隔2S左右(用于判断)。
3.速度环积分时间常数(2008-02)设为0,慢慢增大速度环(2008-01)增益(50/100间隔)。

Image
Image

判断标准:停止时,0速不抖动(606C抖动不超过2rpm)。

4.速度环(2008-01)增益设为880,速度环积分时间常数(2008-02)取个较大值,一般20-30ms,这里先取30ms。(如果大惯量负载,可以稍微放大一些)

Image
Image

判断标准:运行时,实际速度(606C)和规划速度(606B)相同或者超调2%左右(如果减小,伺服振动,取振动时的积分时间常数上调100)。停止时,0速尽量不抖动(6044抖动不超过5rpm)。

5.位置环调试(速度环取880,1000)位置环增益(2008-03)逐渐 增大(200/500间隔)

Image
Image

判断标准:实际位置(6063)不超调,跟随误差(60F4)2000以内。

Image

注:不同的加减速,跟随误差不一样,加减速减小,位置环增益需相应减小。

位置环增益根据实际跟随误差调整,如果加大位置环增益无明显改善,可以通过速度环前馈加以改善

Image

伺服直接拖动丝杆测试(正反2圈,PP模式,T型加速,加减速120000rpm/s)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多