分享

4549.星球层次与不同周期元素的熔点变化

 王东镇 2021-12-25

4549.星球层次与不同周期元素的熔点变化

                          2021.12.25       

我们都知道星球是有层次的,大气层有层次,地下也有层次。而层次是如何形成的,有什么规律性?却乏研究。

我将每个元素的熔点标注在《元素周期表》上,发现了一定的规律性:s区间与ds区间是所有周期元素熔点的过渡区间;p区间是金属元素与非金属,非金属元素与气体元素的过渡区间;d区间是高温金属元素区间;f区间是高温金属元素与非高温金属元素的另一个过渡区间。

S区间只有两个元素,熔点显著不同,是由低到高的变化;ds区间也是只有两个元素,熔点也是显著不同,是由高到低的变化;p区间除了太空元素(第一周期元素)和大气层元素(第二周期元素)之外,是金属元素与非金属元素、非金属元素与气体元素的分水岭;f区间是s区间与d区间之间插入的新的过渡区间,熔点变化也是由低到高,但是不太显著。f区间有14个元素,是第六及以后周期元素特有的区间。从核外电子构型来看,跨越了3218层次。前4个元素属于32层次尾,后10个元素属于18层次头。第六周期f区间的前4个元素是“镍核”元素,后10个元素是钕核元素。从第六周期元素开始,每个周期元素的形成具有了相对的独立性,且数量增加为32个。不像前五周期元素可以依次通过核外电子构型281818854个元素形成,中间增加了32个质子、中子对结构,可能每一个周期元素组成星球的一个层次。依据这种变化,我将前五周期元素视为星球的第一对偶层次,以后每一周期元素形成星球的一个相对独立的对偶层次。

当然,这也是依据地球可能拥有地日和地月两个磁场,古登堡不连续面是两个磁场的分界面,地球不同层次对偶不同周期元素划分的。

根据不同周期元素的熔点变化,首尾相接,可能出现流体和气体层面,由相邻周期元素共同组成。软流层可能由第三和第四周期的低温元素共同组成。

还有,高温元素可能形成于高温区间,低温元素形成于相对低温区间,未必与物质三相对偶。气体元素都是各周期原子量最高的元素,需要最高能量转化,也形成相对的低温区间。分析不同元素的形成区间,产生的不同形态,还是通过实证为好。不能通过实证的,只好理论推理和旁证测算。

研究的深入伴随思考的深入。没有实证条件,只好理论推理,有形而上学之嫌,这是我的无奈。

 

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章