分享

海洋论坛▏水下导航定位技术在大洋科考调查中的应用

 悟文汇粹 2022-01-03

一、引言

水下导航定位技术是实现水下载体定位及导航等相关技术手段的统称在大洋科考调查工作中水下导航定位技术为调查船舶、水下探测装备和探测目标等提供准确的空间位置信息现有水下导航定位技术中水声定位系统、惯性导航系统、多普勒声呐系统以及组合导航定位系统是最主要的导航定位手段在水声定位系统中超短基线定位系统更便携独立是大洋科考调查中应用最广泛的定位技术惯性导航系统具有自主性和隐蔽性强的特点应用也非常广泛多普勒声呐系统测速精度高能够得到水下航行器相对于海底较高精度的位移也是航次中的常用技术水下组合导航定位系统旨在融合多种水下导航定位系统的优点是当前水下导航定位技术研究的热点迄今比较成熟的水下组合导航系统主要以惯性导航为主辅以水声定位、多普勒声呐、重力匹配导航等来实现水下高精度导航定位如美国海军提出的捷联惯导系统+多普勒声呐系统+GPS的组合导航系统、丹麦的MARPOS组合导航系统、我国“潜龙”AUV组合导航系统等随着水下导航定位系统软硬件不断发展和完善水下组合导航定位系统将成为国内外水下导航技术领域未来发展的主导方向

图片

本文首先论述了大洋科考调查中不同水下导航定位技术的基本原理然后结合大洋科考调查航次实测数据探讨和分析了4类主要水下调查设备的导航定位系统技术特征和定位精度最后对我国水下导航定位技术发展趋势和应用进行了展望

二、水下导航定位技术

⒈水声定位系统

水声定位是运用水声学原理进行水下目标定位的技术通过测定声波信号在水下传播的时间或相位差从而得到水下目标的位置见图1根据基线的长短水声定位可分为长基线(LBL)、短基线(SBL)、超短基线(SSBL/USBL)3种定位技术3种水声定位技术各自特点及应用场景见表1其对应的定位系统分别为长基线定位系统、短基线定位系统和超短基线定位系统

表1  水声定位技术分类

图片
图片

图1  水声定位原理示意图

⒉惯性导航系统

惯性导航系统(INS)是一种自主式导航系统不依赖于外部信息也不向外部辐射能量其工作环境不仅包括空中、地面还可以在水下进行工作其工作原理是在惯性参考系下测量载体的加速度并对时间进行积分且变换到导航坐标系中得到所需的位置、速度及偏航角等信息见图2惯性导航系统的定位精度随时间的积累而降低采用差分GNSS辅助则能达到亚米级其优点是自主式、隐蔽性较高可以全天候、全时间、全区域工作能够提供多种连续性导航数据短期精度高而缺点是定位精度随时间积累而降低初始对准时间长无时间信息等

图片

图2  惯性导航系统工作原理示意图

⒊多普勒声呐系统

多普勒声呐系统(DVL)是利用发射波和反射波之间的多普勒频移测量得到航行器相对于海底的航速和累计航程见图3主要为航行器提供纵向和横向移动数据其优点是在很低的速度下仍有较高的测速精度定位精度一般优于1%×D其中D为航行距离缺点是在海底需要采取较低频率才能跟踪较大深度从而导致系统基阵尺寸过大

图片

图3  多普勒声呐系统的工作原理示意图

⒋组合导航定位系统

组合导航定位系统是以惯导为主借助水声导航、多普勒导航、海洋地磁导航、地形匹配导航、重力导航等其中1个或多个系统进行辅助的系统组合导航定位系统将多种导航定位系统的优点组合在一起利用多传感器信息融合互相补充可以大大提高导航定位的可靠性和准确度

三、水下导航定位在大洋科考调查中的应用

在大洋科考调查中会涉及到诸多的学科研究所用到的装备种类繁多需要用到水下导航定位技术的调查装备主要包括电视抓斗、深海钻机、深海光学拖体、单拖体电法探测仪、水下缆控潜水器(ROV)、自主潜水器(AUV)、载人潜水器等这些装备作业原理、调查目的和使用方式不同所用到的水下导航定位技术也不同因此选择哪一种水下导航定位技术主要取决于水下调查设备的作业方式和所要求的定位精度本文以大洋科考调查中四类主要的水下作业设备为例介绍其水下导航定位方式并对其所能达到的定位精度进行详细分析

⒈常规调查装备

在大洋科考调查中电视抓斗、深海钻机、深海光学拖体、单拖体电法探测仪通称为常规调查装备主要借助水声定位系统中的超短基线系统进行定位以确定该装备的坐标位置电视抓斗和深海钻机属于定点取样装备在装备本体上加挂水下声学信标通过船载超短基线定位系统对其进行精确定位以确定采样点的精确坐标位置深海光学拖体和单拖体电法探测仪属于拖曳作业装备在深海水下拖曳系统作业时由于拖体离母船距离较远超短基线定位系统的作用尤为重要不仅可以提供精确的水下位置信息同时对调查装备的水下作业安全也起到重要保障作用

某大洋科考调查航次中采用超短基线定位系统确定的深海光学拖体平面位移轨迹如图4红色线所示通过对深海光学拖体的定位结果进行评估并结合Layback改正计算可得到其最大定位误差Mmax18.75m能够较准确地确定光拖设备的坐标位置为深海作业提供精确位置参考信息

图片

图4  水声定位结果实例示意图

⒉水下缆控潜水器ROV

水下缆控潜水器系统组成一般包括:ROV本体水面监控动力站水面吊放系统固定搭载取样工具和可拆卸取样工具等水下缆控潜水器功能多种多样除用于大洋科考调查外还被广泛应用于国防安全和国民经济的各个领域目前在我国的大洋科考调查中会用到诸多的ROV例如装载在“大洋一号”科考船上的6000m级的“海龙3”ROV和装载在“科学号”科考船上的4500m级的“发现”号ROV

“海龙3”ROV搭载有超短基线定位系统水下信标、组合惯性导航系统(INS-DVL)和深度计等导航设备其中“海龙3”ROV搭载的超短基线定位系统水下信标与“大洋一号”科考船上安装的POSiDonia 6000-USBL配套使用依据ROV作业流程不同作业阶段采用不同导航组合模式见表2

表2  “海龙3”ROV不同作业阶段组合导航模式

作业阶段

组合导航模式

甲板校准

惯导+GPS

下潜上浮过程

惯导+USBL+深度计

近底作业

惯导+USBL+DVL+深度计

在近底作业时惯导系统提供加速度和角速度信息USBL提供位置信息DVL提供速度信息GNSS进行参考位置补偿通过多源信息融合即可输出连续平滑的导航与运动信息

在某航次作业中“海龙3”ROV的定位结果见图5

图片

图5  “海龙3”ROV的定位结果示意图

对上述定位结果进行精度分析可得其定位精度见表3

表3  “海龙3”ROV近底定位精度(1σ)

测试内容

定位精度

自动定向

0.42Deg

自动定深

0.063m

自动定高

0.240m

从表3中的定位精度能够得到采用惯导+USBL+DVL+深度计的组合导航模式能够为“海龙3”ROV的精细化操作和采样提供精确位置信息同时验证了系统控制精度的有效性

⒊自主潜水器AUV

自主潜水器是全新一代水下机器人具备作业区域大、机动性好等特点能够完成多种水下调查任务

目前在“大洋一号”船上执行大洋科考任务的是国产AUV——“潜龙三号”AUV“大洋号”船上则装载了最新的国产AUV——“潜龙四号”AUV

通过各项试验和多航段的科考作业“潜龙三号”AUV形成了一套实用化的、具备热液异常探测功能的4500m级深海探测装备(AUV),可以应用于多金属硫化物资源调查作业

“潜龙三号”AUV搭载有超短基线定位系统水下信标、惯性导航系统(INS)、多普勒声呐系统(DVL)等导航设备其中“潜龙三号”AUV搭载的超短基线信标也是与“大洋一号”科考船上安装的POSiDonia 6000-USBL配套使用

“潜龙三号”AUV在近底作业时采用了惯导+多普勒声呐系统组合导航模式同时融合了超短基线定位信息和深度信息运用该组合导航模式“潜龙三号”AUV能沿设定测线进行航行作业取得所需要的科学调查内容6为“潜龙三号”AUV某潜次作业的航迹及验证点图

图片
图6  “潜龙三号”AUV作业航迹及验证点示意图

本潜次“潜龙三号”AUV近底航程约135km经解算实测点相对于验证点的偏离距离见表4从表4中可得到实测点相对于验证点的最大偏离距离Smax373.4m定位精度优于3‰×D(D为AUV近底航程),能够满足AUV近底精细化地形扫测的需要

表4  实测点相对验证点偏移距离

图片

⒋载人潜水器

载人潜水器是可搭载科考人员进行水下科考和作业的潜水装置主要用来执行水下科学考察、海底管路检测深海矿产资源勘探等任务在我国科考调查中主要的载人潜水器有7000m级的“蛟龙号”载人潜水器、4500m级的“深海勇士号”载人潜水器和万米的“奋斗者号”载人潜水器

“蛟龙号”载人潜水器上搭载的水下导航设备有:超短基线定位系统水下信标、航位推算导航和多普勒声呐系统航位推算导航是运用多普勒声呐系统和罗经解算确定初始位置坐标再依据时间和航向推算出下一时刻位置坐标工作原理与惯性导航系统相类似

“蛟龙号”载人潜水器母船“向阳红08”船上装有两套超短基线系统为法国IXBLUE的POSiDonia 6000-USBL系统和哈尔滨工程大学的HEU-USBL6000系统而其新母船“深海一号”船上装载了法国IXBLUE的POSiDoniaⅡ-USBL系统都是与“蛟龙号”载人潜水器搭载的超短基线定位系统水下信标配套使用

“蛟龙号”载人潜水器在近底作业时采用的是USBL、航位推算导航和多普勒声呐系统进行导航定位7是“蛟龙号”载人潜水器第137潜次的定位结果清楚地描绘出了潜水器的轨迹其中定位数据共3163个误差距离大于100m的跳点170个有效数据率84.6%具有较高的有效数据率能够满足潜水器定位需要

图片

图7  “蛟龙号”载人潜水器作业轨迹示意图

四、结束语

本文以几种典型大洋科考调查设备的水下定位模式为例探讨了不同水下导航定位技术的基本特征及其所能达到的定位精度本文研究表明

⑴USBL在信标运动(水下拖曳)状态下的最大定位误差为18.75m能够准确描述深海光学拖体的位置信息

⑵“惯导+USBL+DVL+深度计”的组合导航模式自动定向精度达0.42Deg自动定深精度达0.063m自动定高精度达0.240m可以满足ROV近底精细化操作和采样的位置精度需求

惯导+多普勒声呐系统组合并融合USBL和深度信息”的组合导航模式定位精度优于3‰×D其导航与定位精度可满足AUV近底精细化地形扫测的需求

⑷“USBL+航位推算导航+多普勒声呐”的水下组合导航定位系统位置信息有效数据率达到84.6%能够满足“蛟龙号”等载人潜水器的定位需要

目前我国大洋科考调查工作中的水下导航定位设备仍严重依赖进口相关定位技术仍与国际先进水平存在显著差距因此我国亟待进一步加强对高精度水下导航定位技术的研究投入重点围绕水下高精度动态定位、多传感器融合导航及水上水下无缝导航等关键技术进行攻坚以形成国家自主多源传感器导航定位装备与数据处理平台

1

END

1

【作者简介】/王轲 周兴华 唐秋华 孟涛,分别来自自然资源部第一海洋研究所和国家海洋局北海海洋技术保障中心。第一作者王轲,1987年出生,女陕西西安人硕士研究生主要从事海底底质分类及海洋地理信息数据处理研究。本文为基金项目,中国大洋协会项目(DY125-21-JS-05)文章来自《海洋测绘》(2021年第4期),参考文献略,用于学习与交流,版权归作者及出版社共同拥有,本文编发取得了授权。

图片
图片
图片

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多