分享

白矮星[低光度、高密度、高温度的恒星]

 思明居士 2022-01-29
第一颗被发现的白矮星是三合星的波江座 40,它的成员是主序星的波江座 40A,和在一段距离外组成联星的白矮星波江座 40B和主序星的波江座 40C。波江座 40B和波江座 40C这一对联星威廉·赫歇尔在1783年1月31日发现的,它在1825年再度被Friedrich Georg Wilhelm Struve观测,1851年被Otto Wilhelm von Struve观测。
在1910年,亨利·诺瑞斯·罗素、爱德华·皮克林和威廉·佛莱明发现他有一颗黯淡不起眼的伴星,而波江座 40B的光谱类型是A型或是白色。
1892年,Alvan Graham Clark发现了天狼星的伴星。根据对恒星数据的分析,这个伴星的质量约一个太阳质量,表面温度大约25000K,但是其光度大约是天狼星的万分之一,所以根据光度和表面积的关系,推断出其大小与地球相当。这样的密度是地球上的物质达不到的。1917年,Adriaan Van Maanen发现了目前已知离太阳最近的白矮星Van Maanen星。
1917年,范·马南发现了一颗孤独的白矮星,被称为范马南星。这三颗白矮星,最早发现的,是所谓的经典的白矮星。终于,有许多的黯淡的白色恒星被发现,它们都有高自行,表示都是紧邻地球的低光度天体,因此都是白矮星。威廉·鲁伊登在1922年要说明这种天体时,似乎是第一个使用白矮星这个名词的人,稍后这个名词经亚瑟·爱丁顿而通俗化了。
在二十世纪初由Max Planck等人发展出量子理论之后,Ralph H. Fowler于1926年建立了一个基于费米-狄拉克统计的解释白矮星的密度的理论。
1930年,苏布拉马尼扬·钱德拉塞卡(印度)发现了白矮星的质量上限(钱德拉塞卡极限),并因此获得1983年的诺贝尔物理学奖
尽管有各种的怀疑,第一颗非经典的白矮星大约直到1930年代才被辨认出来。在1939年已经发现了18颗白矮星,在1940年代,鲁伊登和其他人继续研究白矮星,到1950年发现已经超过一百颗的白矮星,到了1999年,这个数目已经超过2000颗之后的史隆数位巡天发现的白矮星就超过9000颗,而绝大多数都是新发现的。
2014年4月,天文学家在浩瀚的宇宙之中发现了一颗已有110亿年寿命的白矮星,它的温度之低已经使构成它的碳结晶化,成为了一颗“钻石星球”。此次发现的白矮星距离地球约900光年,在水瓶座的方向。据估计,这颗白矮星与地球大小相仿,已有110亿年的寿命,约与银河的寿命相当。它是人类迄今为止发现的温度最低、亮度最暗的白矮星。由于温度降低,构成这颗白矮星的碳已经结晶化,使它成为了一颗“钻石星球”。此前,科学家们曾发现半人马座一颗名为“BPM37093”的白矮星,直径达4000公里,重量相当于10的34次方克拉。科学家们从它的脉动振荡着手,推断出它的核心已经结晶。不过,尽管分子结构相似,但宇宙中的这种“钻石”与通常所说的钻石并不完全相同,仅从重量上,就不是人类身体所能承受的。因此,这颗“钻石星球”尽管价值连城,但最适合它的位置,仍然是浩瀚宇宙中的微光。
2015年02月13日,西班牙马德里国家天文台科学家利用欧洲南方天文台的观测设施,再结合加纳利群岛上的望远镜,天文学家在行星状星云Henize 2-428的中心惊奇地发现了两颗白矮星,它们是由白矮星构成的密近双星。这两颗白矮星近环绕彼此旋转,间距越来越近,大约7亿年后两颗星合二为一之时,它们便会拥有足够的物质,引发一场剧烈的超新星爆炸。此次发现的这两颗白矮星,总质量大约为太阳的1.8倍,每4个小时相互绕转一周。这两颗恒星相距足够近,按照爱因斯坦广义相对论,它们会因为辐射引力波而盘旋着越靠越近,在未来7亿年内最终合并成一颗恒星。这是迄今发现的质量最大的白矮星双星,未来当这两颗白矮星合并为一体时,它们将发生一场失控的热核爆炸,产生出一颗Ia型的超新星的首个案例。合并而成的那颗恒星质量太大,会超过白矮星的理论上限,没有任何东西能够阻止它在自身引力作用下坍缩,继而爆炸成一颗超新星。这一观测结果支持了这样一个理论:中央双星或许可以解释某些行星状星云的古怪形状,不过一个更有趣的结果也随之而来。利用加纳利群岛的望远镜所做的进一步观测,让科学家能够测定这两颗恒星的轨道,并推算出它们各自的质量及两者的间距。
2015年3月15日,澳大利亚天文爱好者 在射手座(也称人马座)的中心位置发现了一颗明亮的星体,其亮度约为+6等,在排除了小行星和恒星的可能性之后,认定这是一颗新星。2015年3月18日,日本天文爱好者再次观测这颗新星时,亮度为+5.3等,据此可以推测其亮度还在不断增加。
新星”并非从无到有的新生恒星,而是原本就在天空中,只是比较暗淡,没有被人观测到。而当它爆发时,亮度会突然增加,被认为是新产生的恒星,因此而得名。新星的爆发源自白矮星和伴行构成的双星系统产生的物质交换。对多数的双星系统,氢燃烧的热量是不稳定的,并且会很快地将大量的氢转换成其他元素,而造成热核反应。这个过程会释放出大量的能量,使白矮星发生极端明亮的爆发,并将表面剩余的气体吹散。
2015年02月,发现行星状星云Henize 2-428中央存在两颗白矮星,质量比太阳要小一些,但两颗白矮星正在相互靠近,大约在7亿年内它们会发生合并,产生一次la型超新星爆发,最终这两颗白矮星会在一场超级爆发中烟消云散。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多