2020年吉林省中考数学试卷 一、单项选择题(每小题2分,共12分) 1.(2分)﹣6的相反数是( ) A.6 B.﹣6 C. 2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为( ) A.11.09×106 B.1.109×107 C.1.109×108 D.0.1109×108 3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为( ) A. 4.(2分)下列运算正确的是( ) A.a2·a3=a6 B.(a2)3=a5 C.(2a)2=2a2 D.a3÷a2=a 5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为( ) A.85° B.75° C.65° D.60° 6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为( ) A.54° B.62° C.72° D.82°
二、填空题(每小题3分,共24分) 7.(3分)分解因式:a2﹣ab= . 8.(3分)不等式3x+1>7的解集为 . 9.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为 . 10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为 .
12.(3分)如图,AB∥CD∥EF.若 13.(3分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为 14.(3分)如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则 三、解答题(每小题5分,共20分) 15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a= 16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率. 17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数. 18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC. 四、解答题(每小题7分,共28分) 19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图: (1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点. (2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点. (3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点. 20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m). (参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)
(1)求k的值. (2)若D为OC中点,求四边形OABC的面积. 22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将 收集的数据进行了整理,绘制的统计表分别为表1、表2和表3. 表1:小莹抽取60名男生居家减压方式统计表(单位:人)
表2:小静随机抽取10名学生居家减压方式统计表(单位:人)
表3:小新随机抽取60名学生居家减压方式统计表(单位:人)
根据以上材料,回答下列问题: (1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处. (2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数. 五、解答题(每小题8分,共16分) 23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示. (1)机器每分钟加油量为 L,机器工作的过程中每分钟耗油量为 L. (2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x的值. 24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H. 【探究】求证:四边形AGHD是菱形. 【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为 . 【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD= 六、解答题(每小题10分,共20分) 25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2). (1)AP的长为 cm(用含x的代数式表示). (2)当点D落在边BC上时,求x的值. (3)求y关于x的函数解析式,并写出自变量x的取值范围. 26.(10分)如图,在平面直角坐标系中,抛物线y=﹣ (1)求b的值. (2)当点Q与点M重合时,求m的值. (3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值. (4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围. 2020年吉林省中考试题答案 一、单项选择题 1A 2B 3A 4D 5B 6C 二、填空题 7.a(a﹣b); 8.x>2;
9.13; 10.(240﹣150)x=150×12; 11.垂线段最短; 12.10;13. 三、解答题: 15解:原式=a2+2a+1+a-a2-1 =3a. 当a= 16.解:根据题意列表如下:
共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有1种情况, ∴小吉同学抽出的两张卡片中含有A卡片的概率为 17.解:设乙每小时做x个零件,甲每小时做(x+6)个零件, 根据题意得: 经检验,x=12是原方程的解,且符合题意, ∴x+6=18. 答:乙每小时做12个零件. 18.证明:∵DE∥AC, ∴∠EDB=∠A. 在△DEB与△ABC中,
∴△DEB≌△ABC(SAS). 19.解:(1)如图①,MN即为所求; (2)如图②,PQ即为所求; (3)如图③,△DEF即为所求. 20.解:设AB与DE交于点F,如图所示: 由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m, 在Rt△ADF中,∠AFD=90°,tan∠EDA= ∴AF=DF×tan36°≈35×0.73=25.55(m), ∴AB=AF+BF=25.55+1.5≈27(m); 答:塔AB的高度约27m. 21.解:(1)将点A的坐标为(2,4)代入y= ∴k的值为8; (2)∵k的值为8,∴函数y= ∵D为OC中点,OD=2, ∴OC=4, ∴点B的横坐标为4,将x=4代入y= ∴点B的坐标为(4,2), ∴S四边形OABC=S△AOD+S四边形ABCD= 22.解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差. (2)600× 答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人. 23.解:(1)由图象可得, 机器每分钟加油量为:30÷10=3(L), 机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L), 故答案为:3,0.5; (2)当0≤x≤10时,设y关于x的函数解析式为y=kx, 10k=30,得k=3, 即当0≤x≤10时,y关于x的函数解析式为y=3x, 当10<x≤60时,设y关于x的函数解析式为y=ax+b,
解得, 即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35, 由上可得,y关于x的函数解析式为y= (3)当3x=30÷2时,得x=5, 当﹣0.5x+35=30÷2时,得x=40, 即油箱中油量为油箱容积的一半时x的值是5或40. 24.解:【探究】∵四边形ABCD和AEFG都是平行四边形, ∴AE∥GF,DC∥AB, ∴四边形AGHD是平行四边形, ∵AD=AG, ∴四边形AGHD是菱形; 【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为: ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56, 故答案为:56; 【操作二】由题意知,AD=AG=5,∠DAB=∠BAG, 又AM=AM, ∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,
∵sin∠BAD= ∴DM= ∵四边形ABCD和四边形AEFG是平行四边形, ∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形, ∵∠AMD=90°,∴∠CDG=∠AMD=90°, ∴四边形CDGF是矩形, ∴ 故答案为:120. 25.解:(1)∵动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,∴AP的长为2xcm; 故答案为:2x;
∵PQ⊥AB,∴∠QPA=90°, ∵△PQD等边三角形,△ABC是等边三角形, ∴∠A=∠B=∠DPQ=60°, ∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC, ∴△APQ≌△BDP(AAS),∴BD=AP=2x, ∵BP=2BD,
(3)①如图2,当0<x≤ ∵在Rt△APQ中,AP=2x,∠A=60°, ∴PQ=AP·tan60°=2
∴S△PQD= ②如图3,当点Q运动到与点C重合时, 此时CP⊥AB,所以AP= 解得x=1,
∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x, ∴BG= ∴S△PBG= ∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x, ∴QH= ∴S△QCH= ∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△QAP=4
所以y=﹣ ③如图5,当1<x<2时,点Q运动到BC边上, 设PD与BC相交于点G, 此时PG=BP·sin60°=(4﹣2x)× ∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x), ∴BG= ∴重叠部分的面积为: S△PQG= 所以y= 综上所述:y关于x的函数解析式为: 当0<x≤ 当 当1<x<2时,y= 26.解:(1)把点A(3,0)代入y=﹣ (2)∵抛物线的解析式为y=﹣ ∵M,Q重合, ∴﹣m+ 解得m=0或4. (3)由题意PQ=MQ,且抛物线的顶点在该正方形内部 ∴3﹣m=﹣m+ 解得m=1﹣ ∴m=1﹣ (4)当点P在直线l的左边,点M在点Q是下方下方时, 抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小, 则有﹣m+ ∴m2﹣4m<0, 解得0<m<4, 观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中, 当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中, 综上所述,满足条件的m的值为0<m<3或m>4.
![]() |
|