分享

地热研究| 邱楠生:中国大陆地区温泉分布的深部热背景

 changyz001 2022-03-13

摘要:温泉是地热资源的直接显示。本文通过收集中国大陆温泉数据,对温泉分布进行了分区,并从热岩石圈厚度、莫霍面深度、岩石圈热结构和居里面深度等角度出发,揭示了温泉分布与深部热背景之间的联系。以泉水温度为依据将温泉定义为低温泉(25℃≤T<50℃)、中温泉(50℃≤T<75℃)和高温泉(T≥75℃)。根据大地构造、区域地理和地热域分区结合温泉分布特征将中国大陆划分为西北、北方、青藏-三江、扬子和东南5个温泉区。温泉主要分布在深部热背景较“热”的地区,具有较薄或极厚的热岩石圈厚度、较浅或极深的莫霍面深度、拥有“热壳”或/和“热幔”的岩石圈热结构以及较浅的居里面深度等特征。相比于中、低温泉,高温泉需要更“热”的深部热背景。而在中等偏厚的热岩石圈厚度、中等偏深的莫霍面深度、非“热”的壳幔结构和较深的居里面地区也存在较少以中低温为主的温泉。温泉的产生和温度受中—新生代以来的构造热事件控制,形成青藏-三江温泉区和东南温泉区内高温泉大量发育的特征。高温泉的形成分布一定程度上揭示了中国大陆存在大量的隆起山地型地热资源,可作为未来地热勘探开发的重要目标。

作者简介:邱楠生,男,1968年生。中国石油大学(北京)教授,主要从事沉积盆地温压场与地热资源评价方面的研究。

基金:国家重点研发计划项目(编号2021YFA0716003)资助的成果;

文章来源:邱楠生,唐博宁,朱传庆.2022.中国大陆地区温泉分布的深部热背景[J].地质学报,96(1):195-207.

关键词 |温泉 大地热流 热岩石圈厚度  莫霍面深度

共10246字 | 建议阅读时间15分钟

作者 | 邱楠生  唐博宁 朱传庆

中国石油大学(北京)油气资源与探测国家重点实验室

中国石油大学(北京)地球科学学院

图片

邱楠生教授

地热资源根据构造成因可分为沉积盆地型和隆起山地型两大类。目前中国地热研究正在众多沉积盆地如火如荼地开展,如渤海湾盆地、共和盆地、松辽盆地等地区均是地热研究的热点(Huang Xiaoxue et al.,2014; 汪集暘等, 2017; Cui Yue et al.,2019; Zhang Chao et al.,2020);隆起山地型地热资源在如羊八井、腾冲、长白山等地区亦进行了大量的研究(多吉,2003; Guo Qinghai et al., 2012; 张英等,2017; 闫佰忠等,2018),但总体的研究范围和深度较沉积盆地型偏少。温泉是地热资源的天然露头,是隆起山地型(对流型)地热资源在地表的直接显示。从温泉入手开展研究,是进行隆起山地型地热资源研究最直接的切入点。

现代中国温泉的调查研究始于20世纪50年代,而将温泉作为可替代的能源进行研究从20世纪70年代才开始。一般将温度≥25℃的泉称为温泉,温泉的温度普遍高于地表水的温度,说明其水源来自较深的地下循环中,指示着地热资源的存在。隆起山地型地热资源量不可忽视,全国温泉放热量达到1.32×1017 J,折合标煤451.83万t(蔺文静等,2013),这仅是出露的温泉所提供的,而温泉所在区域的地下地热储量将更为显著。

深部热背景是地球动力学演化过程和岩石圈活动的重要研究内容,是构造变形、地质演化的动力源。深部热背景对于浅部(包括温泉)温度分布起决定作用,通过热岩石圈厚度、莫霍面深度、岩石圈热结构和居里面深度可反映深部热背景。热岩石圈厚度是具有热传导性能的地球外壳(White, 1988),与深部地幔活动、大型构造演化密切相关(An Meijian et al., 2006);莫霍面是地壳和地幔的分界线,对了解地幔和地壳的发育、构造作用以及深部动力学有重要意义;岩石圈热结构是地幔热流和地壳热流的组成比例(Blackwell, 1971),可揭示地壳、上地幔的活动性和深部温度分布特征;居里面是地下磁性层消磁温度对应的等温面,可反映深部构造特征和温度分布情况(熊盛青等, 2016)。结合四者分析温泉分布区的深部热背景,探讨深部的热能否自下而上地反映到浅部地区,可为温泉的深部热成因提供科学有效的参考。

01

中国大陆地区温泉分布特征

本研究共收集中国大陆≥25℃的温泉2171处(位置距离相近的温泉群视为一处),根据温泉的经纬度坐标和地理位置进行了投点(图1)。为了清晰有效地对温泉温度分布规律进行分析,根据泉水的温度将温泉划分为三类:低温泉(25℃≤T<50℃);中温泉(50℃≤T<75℃);高温泉(T≥75℃)。中国大陆还存在≥100℃的温泉,但数量极少,仅在西藏那曲县谷露、当雄县宁中、萨迦县卡乌,以及云南龙陵县龙山、金平苗族瑶族傣族自治县勐坪等地区有零星出露。三种温度的温泉数量差异显著,低温泉数量最多,占比达到61.9%;其次是中温泉,占比29.8%;高温泉数量最少,占比8.3%。

中国大陆地区温泉分布最为直观的特点是主要分布于地势起伏变化的区域,平坦区域鲜有分布(图1)。温泉分布南北差异明显,中国南部地区温泉数量多且分布广泛,西南的青藏高原南部、横断山脉、云贵高原西部,东南的南岭-武夷山、海南岛等地区低、中、高温泉均有大量出露;云贵高原东部、长江中下游等地区中、低温泉广泛分布,缺少高温泉出露。中国北部地区温泉数量较少且分布位置局限,中、低温泉主要位于西北的阿尔泰山、天山、西昆仑一带,中部的东昆仑、祁连山、秦岭一带,华北的山东半岛、太行山、燕山以及东北的辽东半岛、长白山、大兴安岭等地区,高温泉在其中的东昆仑、山东半岛、燕山、长白山等地区零星分布。总体上,中、低温泉出露区域更广,而高温泉分布较为局限。

从大地构造区划上看,造山系中西藏-三江造山系和武夷-云开-台湾造山系温泉数量大,其中包括了众多的高温泉;秦祁昆造山系和天山-兴蒙造山系温泉数量明显较少,高温泉仅在秦祁昆造山系中部有个别出露。陆块区温泉数量分布差异大,扬子陆块区存在呈北东东向展布的温泉分布带,以低温泉为主,中温泉较少,极少的高温泉集中在西南角;华北陆块区仅在东部分布了一定温泉,有较少高温泉;塔里木陆块内几乎没有温泉分布。次一级构造单元盆地内部基本没有温泉,仅有少数分布在盆地近边缘的褶皱带上。总体而言,温泉在造山系和陆块区均有分布,其中高温泉主要分布在造山系内,陆块区内以中、低温泉为主。

前人对中国大陆温泉点和断裂分布进行了叠加(王贵玲等, 2020),大多数温泉位于活动断裂附近,局部有沿断裂呈串珠状分布的现象,如鲜水河断裂带存在多条温泉连续分布带。对比中国大陆近期地震活动区域(张春山等, 2003; 张培震等, 2013),温泉分布与地震也存在一定联系。温泉分布特征与中新生代以来的活动断裂、地震分布有较好的相关性(Wang Jiyang, 1996)。

地形起伏(高原、山脉)、造山系、断裂带、地震活动等均是深部地球动力学的反映和强烈构造活动的表现,这些地区均为温泉发育区,表明温泉与构造强度之间存在必然联系。深部热背景控制着构造活动,从深部热背景分析温泉的分布特征是行之有效的溯源研究。

本文以中国大地构造陆块区和造山系分区为基础(潘桂棠等, 2009),结合地热域划分(何治亮等, 2017)和区域地理特征(新华通讯社, 2020),根据温泉分布位置,将中国大陆温泉划分为5个大区进行分析(图1),从北到南依次为:

① 西北温泉区。由天山-兴蒙造山系大兴安岭以西、塔里木陆块区和华北陆块区太行山脉以西构成。温泉数量较少,主要分布在西北缘,东缘有零星分布,均为中、低温泉。

② 北方温泉区。由天山-兴蒙造山系大兴安岭以东和华北陆块区太行山脉以东构成。温泉主要分布在渤海湾盆地四周和该区西南角,以中低温泉为主,有较少高温泉分布。

③ 青藏-三江温泉区。主要为西藏-三江造山系和秦祁昆造山系祁连山以西地区,囊括了整个青藏高原。区内温泉非常发育,藏南、三江地区温泉数量大,东北缘数量较少,低、中、高温泉均有大量分布。

④ 扬子温泉区。主要由秦祁昆造山系祁连山以东和扬子陆块区构成。温泉数量较多,沿北东东向广泛分布,以低温泉为主,其次是中温泉,高温泉数量较少且集中在该区西南角。

⑤ 东南温泉区。与武夷-云开-台湾造山系重合,温泉数量大,低、中、高温泉均有大量分布。

图片

图1 中国大陆地区温泉分布及其分区

温泉分区:(1)—西北温泉区;(2)—北方温泉区;(3)—青藏-三江温泉区;(4)—扬子温泉区;(5)—东南温泉区(温泉分区编号同图2~图5)。地形:1—阿尔泰山脉;2—准噶尔盆地;3—天山山脉;4—塔里木盆地;5—西昆仑;6—青藏高原;7—柴达木盆地;8—祁连山脉;9—共和盆地;10—东昆仑;11—横断山脉;12—四川盆地;13—云贵高原;14—南岭;15—武夷山脉;16—黄山;17—泰山;18—山东半岛;19—渤海湾盆地;20—太行山脉;21—燕山山脉;22—辽东半岛;23—长白山脉;24—松辽盆地;25—大兴安岭;26—鄂尔多斯盆地。构造单元:Ⅰ—天山-兴蒙造山系;Ⅱ—塔里木陆块区;Ⅲ—华北陆块区;Ⅳ—秦祁昆造山系;Ⅴ—武夷-云开-台湾造山系;Ⅵ—扬子陆块区;Ⅶ—西藏-三江造山系

02

温泉分布与深部热动力学背景

2.1 温泉分布与热岩石圈厚度

岩石圈是软流圈之上具有高强度(高黏滞度、低流变性)的地球外壳。不同的划分方法可以将岩石圈划分为热岩石圈厚度、地震学岩石圈厚度和弹性岩石圈厚度等(Artemieva et al., 2002;嵇少丞等, 2008)。热岩石圈是具有热传导地温梯度的地球外壳,是地球最外侧的热传导层,下部区域在长时间尺度和高温的影响下表现为对流等流动性质。热岩石圈厚度定义为一维稳态热传导地温线与干玄武岩或地幔绝热线的交点处的深度(Morgan, 1984)。

图片

图2 中国大陆温泉分布与地震-热岩石圈厚度(地震-热岩石圈厚度引自An Meijian et al., 2006)

利用高精度的地震波速分布反演可得到温度分布数据,依据热岩石圈厚度定义计算可得到地震-热岩石圈厚度,该厚度同时具有热岩石圈和地震学岩石圈的优点(An Meijian et al., 2006)。An Meijian et al. (2006)以此绘制了中国大陆地震-热岩石圈厚度图,厚度分布总体呈现出东薄西南厚的特点。

温泉分布与热岩石圈厚度显示(图2),西北温泉区热岩石圈厚度由西至东逐渐减薄,西北缘和东缘温泉出露区厚度在110~160 km, 中低温泉倾向于厚度中等偏薄区域。北方温泉区热岩石圈厚度除长白山地区外整体较薄,低、中、高温泉主要位于中间较薄区域,较薄的厚度为温泉分布提供了条件。青藏-三江温泉区热岩石圈厚度差异显著,在西南一带厚度低于100 km的滇西地区、140~180 km间的横断山脉和厚达200 km的藏南地区均有大量温泉分布,虽然不同厚度区均有温泉分布,但温泉的密集程度在滇西、横断山脉、藏南存在递减的趋势,一定程度上表明温泉分布与热岩石圈厚度存在关联;该区东北缘较少温泉分布区厚度在120~160 km左右,与西北温泉区类似。扬子温泉区在中间较厚而在其余地区较薄,温泉在西南薄区、中部中等偏厚区和东北薄区均有大量分布,但高温泉在西南薄区分布较多,体现出高温泉更倾向于厚度薄区。东南温泉区整体厚度较薄,显示温泉在厚度薄区存在广泛分布的特征。

综上所述,除藏南地区外,温泉多分布在热岩石圈厚度小于150 km的区域,其中高温泉主要位于100 km以内更薄地区,在扬子温泉区中部厚度在160~180 km较厚区虽然也有温泉出露,但以中低温泉为主,总体上体现出与热岩石圈厚度存在相关性。在藏南地区极厚的热岩石圈分布有大量的温泉,与该区受印度-亚欧板块碰撞对地壳强烈扰动相关,具体分析见后文讨论部分。

2.2 温泉分布与莫霍面深度

莫霍面是地球内陆壳和地幔的分界线,为地下纵波速度由6~7 km/s突然提高到8.1 km/s的界面。莫霍面深度分布特征对于岩石圈结构、壳幔构造演化、深部动力学具有重要意义。Teng Jiwen et al. (2013)以114条广角地震剖面为基础,通过克里金插值得到了中国大陆莫霍面深度分布图,总体上莫霍面深度在10~80 km之间,呈现西深东浅的特点。

温泉分布与莫霍面深度显示(图3),西北温泉区由西至东莫霍面深度呈降低趋势,由40~60 km降低至35~45 km, 温泉在不同深度均有分布。北方温泉区整体深度较浅,基本介于30~40 km, 较浅的深度有利于温泉的出现。青藏-三江温泉区在青藏地区深度非常大达到约70 km, 横断山脉深度降低至约50 km, 滇西地区深度变小至40 km左右,温泉在不同深度区均有分布,但在较浅的滇西地区分布最为密集,显示出温泉分布与较浅的深度具有相关性。扬子温泉区西北莫霍面深度较大在40~50 km之间,往东逐渐降低至30 km, 不同深度均有大量温泉分布,但高温泉主要在西南较浅的地区,体现出高温泉更倾向于较浅地区。东南温泉区整体深度较浅,在30~40 km之间,较浅的莫霍面深度为温泉的分布提供了有利条件。

图片

图3 中国大陆温泉分布与莫霍面深度(莫霍面深度底图引自Teng Jiwen et al., 2013)

总体而言,除青藏地区以外,温泉主要分布在50 km以浅地区,高温泉多分布在40 km以内的区域,体现出温泉分布与莫霍面深度存在相关性。莫霍面深度与热岩石圈厚度的整体分布特征相似,藏南地区大量温泉分布对应于极大的深度将在后文进行讨论。

2.3 温泉分布与岩石圈热结构

稳态热传导下的大地热流由地壳热流和地幔热流两个部分组成,地壳热流是地壳中放射性元素铀、钍、钾等衰变产生的热流;地幔热流是由地球深部传至上地幔顶部的热流(Birth et al., 1968; Blackwell, 1971)。一个地区地壳、地幔两部分热流的配分比例及其组构关系构成了岩石圈热结构,直接影响现今地壳和上地幔的活动性以及深部温度情况,与深部构造活动关系密切,其中的地幔热流更能体现区域构造活动性,能够反映区域热背景。

大地热流是指单位时间、单位面积由地球内部以热传导方式传至地表,而后散发到太空中的热量。从定义可知大地热流本身包含了地球从深部到浅部的热信息。以第四版中国大陆地区大地热流数据为基础绘制的大地热流分布图显示,热流总体表现为东高、中低、西南高、西北低的趋势,中间局部增大的区域主要受大陆隆起或壳内岩浆房或熔融体影响(Jiang Guangzheng et al., 2019)。

由温泉分布和大地热流看出(图4),西北温泉区热流呈西低东高的趋势,西北缘温泉主要在40~60 mW/m2的较低热流区,较低的热流能够发育中低温泉。北方温泉区温泉既分布在中部和西南角热流低于60 mW/m2的区域,也分布在热流大于60 mW/m2的东缘一带,高低热流均能发育温泉,温泉分布和热流并非严格相关。青藏-三江温泉区的热流呈带状分布,温泉主要分布在南部藏南-三江一带和东北缘一带大于60 mW/m2的高热流值区,而在中间带50~60 mW/m2地区温泉极少,该区温泉集中在热流高值区显示出明显的与热流存在相关性。扬子温泉区热流在南部、西北缘和东北缘较大而在北部偏小,温泉在不同的热流区均有分布,但高温泉主要分布在西南角热流大于60 mW/m2处,显示出高温泉更依赖高热流值。东南温泉区热流整体较大,热流集中在60~80 mW/m2,温泉与热流的较强相关性与青藏-三江温泉区类似。

图片

图4 中国大陆温泉分布与大地热流、岩石圈热构造区 (热流底图引自Jiang Guangzheng et al., 2019;热结构分区引自Wang Jiyang, 1996)

由上可知,大部分温泉分布在热流大于50 mW/m2的区域,其中高温泉主要分布在70 mW/m2以上地区,揭示出温泉分布与大地热流存在较强的相关性。下面将大地热流进行解剖分析,从岩石圈热结构角度进一步探讨。

Wang Jiyang (1996)提出根据地壳和地幔热流的配分情况可将岩石圈热结构划分为“冷壳热幔”(地壳热流小于地幔热流)和“热壳冷幔”(地壳热流大于地幔热流),而后又相继发展出“冷壳冷幔”、“温壳温幔”等(胡圣标等, 2013)。结合前人观点,本次研究定义壳/幔热流<25 mW/m2为“冷”,壳/幔热流介于25~35 mW/m2为“温”,壳/幔热流≥35 mW/m2为“热”。Wang Jiyang (1996)将中国大陆岩石圈热结构划分为5个热构造区(图4):西北热构造区地壳热流介于18~26 mW/m2,地幔热流为20 mW/m2左右(Wang Jiyang, 1996; 饶松等, 2013; Qiu Nansheng et al., 2022),整体构造稳定,为“冷壳冷幔”型岩石圈热结构,区内主要为西北温泉区西部,在“冷壳冷幔”中主要发育中、低温泉;青藏-三江温泉区东北缘虽在此,但该区柴达木盆地壳、幔热流分别为28 mW/m2、25 mW/m2(邱楠生, 1998),为“温壳温幔”型,共和-贵德盆地地壳热流在40 mW/m2以上,地幔热流为27 mW/m2(Zhang Chao et al., 2018, 2020),为“热壳温幔”型,这或是该区域有高温泉出露的原因。西南热构造区受印度-亚欧板块碰撞影响致地壳热流升高至50 mW/m2以上,地幔受扰动较少热流在30 mW/m2左右,壳幔热流比在2以上(沈显杰等, 1989; Wang Jiyang, 1996),青藏-三江温泉区主体大量温泉位于该区,高温泉数量众多,“热壳温幔”为主的热结构为高温泉分布提供了条件;值得注意的是,该区内腾冲地区壳、幔热流分别在35 mW/m2和57 mW/m2左右(徐青等, 1992; 周真恒等, 1997),“热壳热幔”型热结构使得高温泉大量产生。中部热构造区壳幔热流比在1左右,深部环境相对东部稳定,壳、幔热流均主要在25~30 mW/m2左右(Wang Jiyang, 1996; 邱楠生,1998; Qiu Nansheng et al., 2022),热结构主要为“温壳温幔”型,西北温泉区东部和扬子温泉区主体分布在此,与“冷壳冷幔”相似,“温壳温幔”也以中、低温泉为主。中国东部的东北热构造区和东南热构造区受太平洋板块或菲律宾海板块俯冲,造成地幔热流增大到40 mW/m2以上(何丽娟等,2001; Qiu Nansheng et al., 2022),东北热构造区地壳热流在26~30 mW/m2(邱楠生,1998; 韩湘君等,2002; Qiu Nansheng et al., 2022),以“温壳热幔”型为主,对应北方温泉区;东南热构造区因存在大量的岩浆岩生热,较多地壳热流显示在35 mW/m2以上(Hu Shengbiao et al., 2000; 王安东等, 2015),以“热壳热幔”型为主,对应东南温泉区,“热壳热幔”型热结构给高温泉的大量出露提供了条件。温泉分布区对应区域较大,其内部的岩石圈热结构复杂多变,在此仅以具有区域代表性的岩石圈热结构进行分析,针对具体地区进行研究时还需结合实际情况开展进一步精细讨论。

由上可知,中、低温泉在不同岩石圈热结构分区均有分布,西北温泉区和扬子温泉区主体为“冷壳冷幔”型和“温壳温幔”型热结构,两个地区构造相对稳定,地壳和地幔中都没有明显的增热,高温泉数量较少。青藏-三江温泉区和东南温泉区两个高温泉聚集区分别对应“热壳温幔”型和“热壳热幔”型热结构,前者以地壳增热为主,后者包括地幔和地壳增热,虽然增热的部位不完全相同,但均使得整体热流增高。因此,高温泉主要分布在壳幔中任有一方热流增大的区域,而壳幔热流较平稳的地区主要发育中、低温泉。

2.4 温泉分布与居里面深度

居里面是地球岩石圈上部磁壳层的底界面,随着埋藏深度增加温度升高,当温度达到一定值时,磁性矿物将会失去铁磁性变为顺磁性,此时的温度为居里点(磁铁矿的消磁温度为580~585℃),对应的埋藏深度界面为居里等温面,简称居里面(Spector et al., 1970;侯重初,1989)。居里面是岩石圈热特征界面,能够表征地壳磁性层的分布特点、地壳热均衡状态和不同地区热结构特征,对于地热、矿产、岩浆研究具有重要意义(Tanaka et al., 1999;刘益中等, 2012;Gao Guoming et al., 2015;高玲举等,2015;熊盛青等,2016)。

熊盛青等(2016) 根据1/100万航陆域磁异常数据利用功率谱法编制了中国陆域居里面深度图。总体上,居里面深度与构造活动强度相关,陆块区居里面较深,集中在28~45 km; 造山系居里面较浅,主要在18~26 km。

由温泉分布和居里面深度可知(图5),西北温泉区居里面深度变化较大,从西向东呈深-浅-深-浅变化,西北缘和东缘温泉出露区深度主要在20~30 km, 显示中、低温泉在深度中等偏浅区可出露。北方温泉区居里面深度整体较浅,大部分温泉深度在23 km内,西南部温泉深度在23~30 km, 较浅的居里面是温泉发育的有利部位,温泉分布和居里面深度存在联系。青藏-三江温泉区的居里面深度南北小中部大,南北温泉出露区深度大多在21 km内,同样也显示出较浅的居里面为温泉的分布提供了条件,两者关系更为明显。扬子温泉区居里面深度在西南和东部小于26 km, 中部在26~40 km之间,虽然在居里面较浅区和较厚区均有大量温泉出露,但在较厚地区基本无高温泉出露,高温泉的分布更依赖于较浅的居里面。东南温泉区居里面深度整体偏小,大部分在26 km内,进一步凸显温泉与较浅的居里面的相关性,与青藏-三江温泉区相似。

图片

图5 中国大陆温泉分布与居里面深度(居里面深度底图引自熊盛青等, 2016)

总体而言,温泉的分布和居里面深度具有较好的相关性,大部分温泉分布在居里面深度小于26 km的较浅地区。居里面深度较厚(大于30 km)地区也存在较少温泉分布,但以中、低温泉为主,高温泉基本分布在居里面深度小于23 km的地区。居里面是上地幔至下地壳区间内的温度界面,温度小于一般岩浆温度,能同时反映来自地幔向上传递的热和地壳内部热活动的特点,与大地热流具有相似性,是地幔和地壳深部热背景的综合反映。居里面与温泉的良好对应关系说明了深部热背景对温泉的影响不可忽视。

03

讨论

在分析温泉对应的深部热背景时一些因素不可忽视,比如地震资料的解释处理过程、数据的精度;热流点数据较少在中国大陆达不到全面均衡覆盖,岩石圈热结构研究多聚焦于沉积盆地,在温泉多出露的山地隆起区相对较少;居里面深度的获取因不同的计算处理过程有所差异;中国大陆面积大,局部复杂的地质条件无法精细反映到各个图中,这些因素均会造成其反映的热背景产生偏差。此次收集的温泉并未包含全国所有的温泉,人迹罕至地区可能尚待发现,深部的热向上传递是一个复杂的过程,其中的热信息并不能完全记录在浅部的温泉中,以上均会影响温泉区对应的深部热背景相关性分析。

温泉和热岩石圈厚度、莫霍面深度、大地热流、居里面深度存在关联,四者具备类似的深部动力学成因。温泉的产生和温度分布受中—新生代以来的构造热事件控制,存在着随远离板块边界而减弱的趋势(陈墨香等, 1994)。

青藏-三江温泉区受印度-亚欧板块碰撞影响,青藏地区地壳厚度显著增厚,热岩石圈厚度最厚至200 km以深,莫霍面深度增大至70 km以上。岩石圈热结构为“热壳温幔”,这是多种因素作用的结果:壳内存在局部熔融层,有的侵入到浅部形成岩浆囊或直接喷出地表;巨厚地壳使放射性元素富集空间增大;地壳快速抬升剥蚀使得地下等温线上隆;碰撞推挤作用使得地壳产生剪切摩擦生热(沈显杰等, 1990, 1992;胡圣标等, 2015;Zhang Chao et al., 2018,2020)。腾冲地区地壳浅部也存在岩浆囊供热(白登海等, 1994; 上官志冠, 2000)。地壳中的扰动使得地壳热流增大,居里面随之变浅。强烈的地壳活动使得该区内发育众多温泉,“热”的深部热背景促使大量高温泉产生。

中国东部受太平洋板块或菲律宾海板块俯冲影响强烈,西太平洋板块进入地幔中,发生了岛弧火山作用、弧后扩张和大陆岩石圈减薄过程(吴福元等, 2003; 朱日祥等, 2012),造成北方温泉区和东南温泉区的热岩石圈厚度减薄至100 km内,莫霍面深度降低至40 km内;对地幔的强烈扰动造成地幔热流显著增大(邱楠生等, 2017),形成北方温泉区“温壳热幔”型热结构和较浅的居里面。东南温泉区发生了大面积的岩浆活动和火山作用,形成“热壳热幔”型热结构,菲律宾海板块挤压形成了断裂发育的深循环系统(廖志杰, 2012),温泉广泛发育,并形成较多高温泉。不同于东南,北方温泉区内有渤海湾盆地、辽河盆地和松辽盆地等,盆地内不具备温泉发育的条件,仅在盆地边缘山区发育温泉,受山前断裂或轴部岩浆岩分布影响明显(牛树银等, 2001),较“热”的深部热背景也使得该地区存在高温泉的出露。

西北温泉区受印度-亚欧板块碰撞的远程影响(Tapponnier et al., 1982),随着离碰撞带距离增加热岩石圈厚度和莫霍面深度逐渐减小。整体构造较为稳定,缺少明显的地壳或地幔热变化,形成西部“冷壳冷幔”型和东部“温壳温幔”型热结构,居里面深度西部和中部较深。该区发育了塔里木盆地、准噶尔盆地和鄂尔多斯盆地,较为稳定的构造使得出露温泉较少,受断裂深循环影响形成中低温泉(王道等, 1999; 庞忠和等, 2011),因较“冷”的热背景该区没有发育高温泉。

扬子温泉区受太平洋板块俯冲和印度-亚欧碰撞的影响均较小(胡圣标等, 2015),热岩石圈厚度和莫霍面深度处于青藏高原和中国东部的过渡区间,以“温壳温幔”型热结构为主,居里面深度西北厚西南和东北薄。该区以褶皱带居多,分布了大量的温泉,总体深部热背景并不活跃,高温泉在邻近板块碰撞带处有零星出露,大多数是中、低温泉。

不同于大地热流和居里面深度在藏南地区的分布与其他温泉区相似,热岩石圈厚度和莫霍面深度在藏南表现为相反的特征。因为大地热流和居里面位于浅部,可同时反映壳幔热活动,而热岩石圈通常位于上地幔中,厚度一般大于60 km, 莫霍面是壳幔分界线,后两者对于壳内活动以显著增厚的形式反映出来。因此温泉与热岩石圈厚度和莫霍面深度的相关性可表示为:温泉尤其是高温区倾向于较薄区/较浅区和极厚区/极深区,在中等偏厚/中等偏深的构造稳定区虽有温泉出露,但也以中低温泉为主。

总体上温泉倾向于分布在深部热背景较“热”的地区,但反过来深部热背景较热的地区不一定发育温泉,因为温泉的位置、温度等是多种因素共同作用的结果,包括地理位置、地形地貌、构造、热源、水文地质等条件(肖长来等, 2010),比如来自高温热储的温泉在向上运移的过程中如受冷水混入会造成温度降低。在深部热背景较“冷”的地区也有温泉分布,但多以中、低温泉为主。温泉的产生主要受控于近期构造活动,沉积盆地内鲜有温泉出露,大多数温泉出露于基岩裂隙、岩体边缘接触带、断裂带、断裂交汇处和构造薄弱区等构造活动区域。大部分温泉尤其高温泉的出露和深大断裂关系密切且需要一定的循环深度,因此温泉出露虽然和深部热背景有关联,但和浅部地质结构关系也很大,限制于不同的形成条件差异、地下水循环深度等,温泉对深部热动力学背景的体现存在有一定的复杂性,并非简单的关联。

相比于中、低温泉,高温泉的发育需要更“热”的深部热背景,因而可从高温泉的形成分布特征入手揭示中国大陆潜在的隆起山地型地热资源,作为未来地热勘探开发的重要目标。

04

结论

本次研究采取“自下而上”的思路,从热岩石圈厚度、莫霍面深度、岩石圈热结构、居里面深度等出发分析中国大陆地区温泉分布区的深部热背景。根据泉水温度将温泉划分为低温泉(25℃≤T<50℃)、中温泉(50℃≤T<75℃)和高温泉(T≥75℃)。根据大地构造、区域地理和地热域分区结合温泉分布特征将中国大陆划分为西北、北方、青藏-三江、扬子和东南5个温泉区。

中国大陆温泉分布与热岩石圈厚度、莫霍面深度、岩石圈热结构和居里面深度存在相关性,受深部热背景影响显著。温泉尤其是高温泉倾向于热岩石圈厚度薄区和极厚区,在中等偏厚区虽有温泉出露,但以中低温泉为主。温泉在不同莫霍面深度的分布规律与热岩石圈厚度类似,多分布在深度较浅区和极深区。大部分温泉分布在热流大于50 mW/m2的区域,高温泉多分布在70 mW/m2以上地区,壳、幔中一方为“热”的岩石圈热结构是高温泉主要分布区。多数温泉分布在居里面深度小于26 km的浅部地区,高温泉基本上位于居里面深度小于23 km地区。

温泉的产生与构造活动密不可分,受西南印度-亚欧板块碰撞和东部太平洋板块或菲律宾海板块俯冲影响显著。温泉的产生分布受控于“热”的深部热背景,较薄或极厚的热岩石圈厚度、较浅或极深的莫霍面深度、具有“热壳”或/和“热幔”的岩石圈热结构以及较浅的居里面深度等为温泉的形成提供了必要条件,其中高温泉发育的背景更“热”。而在较“冷”的深部热背景区即中等偏厚的热岩石圈厚度、中等偏深的莫霍面深度、“冷壳冷幔”或“温壳温幔”的岩石圈热结构和居里面较深等地区有较少温泉分布,但以中、低温泉为主。

参考文献见《地质学报》原文

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多