分享

木星辐射能量

 东耳果果 2022-03-18
木星,罗马人以主神朱庇特命名这颗行星。古代中国则称为岁星,取其绕行天球一周约为12年,与地支相同之故。到西汉时期,《史记‧天官书》作者司马迁从实际观测发现岁星呈青色,与五行学说联系在一起,正式把它命名为木星。至2019年木星已知有79颗卫星。
构造、水
木星有一个石质的内核,由铁和硅组成。向外是由岩石与氢的混合颗粒物组成,无明确的边界,在向外被一层含有少量氦,主要是氢元素的液态金属氢包覆着。内核上则是大部分的行星物质集结地,以液态氢的形式存在。这些木星上最普通的形式基础可能只在40亿帕压强下才存在,木星内部这种环境是由液态金属氢离子化的质子与电子组成。
木星正在向其宇宙空间释放巨大能量。它所放出的能量是它所获得太阳能量的两倍。这说明木星释放能量的一半来自于它的内部。木星内部存在热源。有人认为它的热能可能是木星形成时,由引力势能转变而来,被液态氢大规模对流到表面上。太阳之所以不断放射出大量的光和热,是因为太阳内部时刻进行着核聚变反应,在核聚变过程中释放出大量的能量。木星是一个巨大的液态氢星球,本身已具备了无法比拟的天然核燃料,加之木星的中心温度已达到了28万K,具备了进行热核反应所需的高温条件。至于热核反应所需的高压条件,就木星的收缩速度和对太阳放出的能量及携能粒子的吸积特性来看,木星在经过几十亿年的演化之后,中心压可达到最初核反应时所需的压力水平。木星和太阳的成分十分相似,但是却没有像太阳那样燃烧起来,是因为它的质量太小。木星要成为像太阳那样的恒星,需要将质量增加80倍才行,根据天文学家的计算,只有质量大于太阳质量的7%,才能进行氘聚变反应,发出光和热。
磁场、密度
在木星内部的温度压强下氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源,木星的磁场强度大约10高斯,比地球大10倍。同样在这一层也可能含有一些氦和微量的冰。木星还是天空中已知的最强的射电源之一。
木星的磁场强度是地球的14倍,范围从赤道的4.2高斯(0.42mT)到极区的10至14高斯(1.0~1.4mT),是太阳系最强的磁场(除了太阳黑子)。环绕着行星的是松弱的行星环系统和强大的磁层(木星磁场十分强大,其背对太阳一面的磁场甚至延伸至土星轨道)。这个场被认为是由涡流产生的——旋流运动的导电材料——核心的液态金属氢。在埃欧卫星的火山释放出大量的二氧化硫,形成沿着卫星轨道的气体环。这些气体在磁层内被电离,生成硫和氧的离子。它们与源自木星大气层的氢离子,在木星的赤道平面形成等离子片。这些片状的等离子与行星一起转动,造成进入磁场平面的变形偶极磁场。在等离子片内的电流产生强大的无线电讯号,造成范围在0.6至30MHz的爆发。
木星磁层的范围大而且结构复杂,在距离木星140万~700万千米之间的巨大空间都是木星的磁层;而地球的磁层只在距地心5万~7万千米的范围内。木星的五个大卫星(木卫一至木卫五)都被木星的磁层所覆盖,使之免遭太阳风的袭击。地球周围有条称为范艾伦带的辐射带,木星周围也有这样的辐射带。旅行者1号还发现木星背向太阳的一面有3万千米长的北极光。1981年初,当旅行者2号早已离开木星飞奔土星的途中,曾再次受到木星磁场的影响。由此看来,木星磁尾至少拖长到了6000万千米以外。
木星的磁气圈分布范围比地球磁气圈的范围大上100多倍,是太阳系中最大的磁气圈。由于太阳风和磁气圈的作用木星也和地球一样在极区有极光产生,强度约为地球的100倍。
大气层、温度
木星的高层大气是由体积或气体分子百分率约88%~92%的氢和约7%~11%的氦所组成,剩余1%是其他气体。由于氦原子的质量是氢原子的四倍,探讨木星的质量组成时比例会有所改变:大气层中氢和氦分别占了总质量的75%及24%,余的1%为其他气体物质,包括微量的甲烷、水蒸气、氨以及硅的化合物。另外木星也含有微量的碳、乙烷、硫化氢、氖、氧、磷化氢、硫等物质。大气最外层有冷冻的氨的晶体。木星上也透过红外线及紫外线测量发现微量苯和烃的存在。
木星有着太阳系内最大的行星大气层,跨越的高度超过5000千米。由于木星没有固体的表面,它的大气层基础通常被认为是大气压力等于1MPa(10bar),或十倍于地球表面压力之处。木星的大气层被分为四个层次:对流层、平流层、增温层和散逸层。不同于地球的大气层,木星没有中气层,没有固体的表面,大气最底层的对流层,平稳地转换进入行星的流体内部。这是温度和压力在氢和氦的临界点之上造成的结果,意味着气体和液体的相位之间没有明确的界限存在。
木星的大气与太阳系的前身——原始太阳星云的组成相近,但木星中较重元素的比例却比原始太阳星云多数倍。同为气体行星的土星也是类似的组成,但天王星及海王星中的氢和氦就少得多。由于木星有较强的内部能源,致使其赤道与两极温差不大,不超过3℃,因此木星上南北风很小,主要是东西风,最大风速达130~150米/秒。在木星大气中还观测到有闪电和雷暴。由于木星的快速自转,因此能在它的大气中观测到与赤道平行的、明暗交替的带纹,其中的亮带是向上运动的区域,暗纹则是较低和较暗的云。木星表面有红、褐、白等五彩缤纷的条纹图案,可以推测木星大气中的风向是平行于赤道方向,因区域的不同而交互吹着西风及东风,是木星大气的一项明显特征。大气中含有极微的甲烷、乙炔之类的有机成分,而且有打雷现象生成有机物的概率相当大。
木星内部的温度和压力,由于开尔文-亥姆霍兹机制稳定地朝向核心增加。在压力为10帕的表面,温度大约是340K。在氢相变的区域——温度达到临界点——氢成为金属,相变温度是10000K,压力为200GPa。在核心边界的温度估计为36000K,同时内部的压力大约是3000~4500GPa。
木星光环的形状像个薄圆盘,其厚度约为30千米,宽度约为9400千米,离木星128300千米。光环分为内环和外环,外环较亮,内环较暗几乎与木星大气层相接。光环的光谱型为G型,光环也环绕着木星公转,7小时转一圈。根据对空间飞船所拍照片的研究,现已知道木星环系主要由亮环、暗环和晕三部分组成。亮环在暗环的外边晕为一层极薄的尘云,将亮环和暗环整个包围起来的厚度不超过30千米,亮环离木星中心约13万千米,宽600千米。暗环在亮环的内侧,宽可达5万千米,其内边缘几乎同木星大气层相接。亮环的不透明度很低,其环粒只能截收通过阳光的万分之一左右。靠近亮环的外缘有一宽约700千米的亮带,它比环的其余部分约亮10%,暗环的亮度只及亮环的几分之一。晕的延伸范围可达环面上下各1万千米,它在暗环两旁延伸到最远点,外边界则比亮环略远。据推算,环粒的大小约为2微米,真可算是微粒。这种微米量级的微粒因辐射压力、微陨星撞击等原因寿命大大短于太阳系寿命。
木卫一比月球略大一些,它的平均半径是1821.3公里(比月球大约5%),质量是89.319(1021kg)(大约比月球多21%)。表面环境极其恶劣,其表面星罗棋布地散落着超过400座活火山,地表形态塑造周期较短。
木卫一大气层极端稀薄,只有地球大气压力的十亿分之一,主要的成分是二氧化硫,氯化钠、一氧化硫及氧也有少许。
木卫二的组成与类地行星相似:主要由硅酸盐岩石组成。木卫二有一个薄薄的冰外壳。从伽利略号发回的数据表明木卫二有内部分层结构,并可能有一个小型金属内核。但是木卫二的表面不像一个内层太阳系的东西,它极度的光滑:只能看到极少的数百米高的地形。凸出的记号看来只是反照率特性或是一些不大的起伏。
木卫二表面包裹着一层主要由氧构成的极其稀薄的大气(1地表气压约1微帕)。大气中的氧是非生物来源的。很可能是带电粒子的撞击和阳光中的紫外线线的照射使木卫二表面冰层中部分水分子分解成氧和氢,氢因原子量低而逃逸,原子量相对较高的氧则被保留下来。
木卫三是太阳系中最大的卫星。直径大于水星,质量约为水星的一半,木卫三的平均密度为1.936g/cm³,表明它是由近乎等量的岩石和水构成的,后者主要以冰体形式存在。冰体的质量占卫星总质量的46-50%,此外可能还存在某些不稳定的冰体,如氨的冰体。木卫三岩石的确切构成还不为人知,但是很可能接近于L型或LL型普通球粒陨石,这两类陨石较之H球粒陨石,所含的全铁和金属铁较少,而铁氧化物较多在木卫三上,以质量计,铁和硅的丰度比为1.05-1.27,而在太阳中,则为1.8。
木卫三星体分层明显,拥有一个富铁的、流动性的内核。是太阳系中已知的唯一拥有磁圈的卫星。拥有一层稀薄的含氧大气层,其中含有原子氧,氧气和臭氧。而木卫三上是否拥有电离层还尚未确定。
木卫四是太阳系第三大卫星,也是木星第二大卫星,仅次于木卫三。木卫四的直径为水星直径的99%,但是质量只有它的三分之一。该卫星的轨道在四颗伽利略卫星中距离木星最远,约为188万千米。木卫四并不像内层木卫一、木卫二和木卫三那般处于轨道共振状态,所以并不存在明显的潮汐热效应。木卫四属于同步自转卫星,永远以同一个面朝向木星。木卫四由于公转轨道较远,表面受到木星磁场的影响小于内层的卫星。
天文学家通过光谱测定得知木卫四表面物质包括冰、二氧化碳、硅酸盐和各种有机物。伽利略号的探测结果显示木卫四内部可能存在一个较小的硅酸盐内核,同时在其表面下100千米处可能有一个液态水构成的地下海洋存在。由于木卫四上可能有海洋存在,所以该卫星上也可能有生物生存,不过概率要小于邻近的另一颗卫星木卫二。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多