![]() 作者:俊欣 来源:关于数据分析与可视化 今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块 pip install pandasql 要是你目前正在使用jupyter notebook,也可以这么来下载
导入数据我们首先导入数据 import pandas as pdfrom pandasql import sqldfdf = pd.read_csv('Dummy_Sales_Data_v1.csv', sep=',')df.head() output ![]() 我们先对导入的数据集做一个初步的探索性分析,
output <class 'pandas.core.frame.DataFrame'>RangeIndex: 9999 entries, 0 to 9998Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64 dtypes: float64(1), int64(5), object(6)memory usage: 937.5+ KB 再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
output <class 'pandas.core.frame.DataFrame'>RangeIndex: 9999 entries, 0 to 9998Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64 dtypes: float64(1), int64(5), object(6)memory usage: 937.5+ KB 用SQL筛选出若干列来我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
与Pandas模块联用的时候就这么来写 query = 'SELECT OrderID, Quantity, Sales_Manager,\Status, Shipping_Address, ShippingCost_USD \FROM df'df_orders = sqldf(query)df_orders.head() output ![]() SQL中带WHERE条件筛选我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
output ![]() 而要是条件不止一个,则用AND来连接各个条件,代码如下 query = 'SELECT * \ FROM df_orders \ WHERE Shipping_Address = 'Kenya' \ AND Quantity < 40 \ AND Status IN ('Shipped', 'Delivered')'df_kenya = sqldf(query)df_kenya.head() output ![]() 分组同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
output ![]() 排序而排序在SQL当中则是用ORDER BY,代码如下 query = 'SELECT Shipping_Address, \ COUNT(OrderID) AS Orders \ FROM df_orders \ GROUP BY Shipping_Address \ ORDER BY Orders'df_group = sqldf(query)df_group.head(10) output ![]() 数据合并我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
output ![]() 我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下 query = 'SELECT T1.OrderID, \ T1.Shipping_Address, \ T2.Product_Category \ FROM df_orders T1\ INNER JOIN df_products T2\ ON T1.OrderID = T2.OrderID'df_combined = sqldf(query)df_combined.head() output ![]() 与LIMIT之间的联用在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
output ![]() |
|