上一篇,我们介绍了 ES 文档的基本 CURE 和批量操作。我们都知道倒排索引是搜索引擎非常重要的一种数据结构,什么是倒排索引,倒排索引的原理是什么。 1 索引过程 在讲解倒排索引前,我们先了解索引创建,下图是 Elasticsearch 中数据索引过程的流程。 从上图可以看到,文档未在 ES 中进行索引,而是 由 Analyzer 组件对其执行一些操作并将其拆分为 token/term。然后将这些术语作为倒排索引存储在磁盘中。假设我们有两个名为 name 和 age 字段,当要将文档索引到 ES 时,Analyzers 组件 以某些定界符(有默认定界符,例如空格,句号等)将它们分割开获取 token,再对每个 token 应用特定的过滤器。经过分析的这些标记称为 term。然后将这些 term 针对该字段)存储在倒排列表中。 2 倒排索引 2.1 正排与倒排索引 一般在我们阅读图书,我们会根据目录快速定位想要阅读的章节,过了一段时间,你想要的回顾之前某一个知识点,你发现从目录难以查找到对应的地方,这时你可能就会从索引页从去查找对应内容索引,从而找到页码。 搜索引擎其实跟我们的使用图书很相似,下面我来对图书和搜索引擎进行一个简单的类比,来看一下搜素引擎中正排和倒排索引。
2.2 倒排索引的核心组成 举个例子,假设我们有 3 个文档:
经过分析,文件中的术语如下
倒排列表的元数据结构:
其中:
则它们生成的倒排索引
ES 也可以指定对某些字段不做索引
3 总结 在之前文章说了 ES 的文档是基于 JSON 格式,在我们创建索引的时候,对每一个文档记录对应索引相关的信息。在对倒排索引进行搜索时,查询单词是否在单词字典,获取单词在倒排列表的指针,获取有该单词单词的文档 Id 列表,通过 ES 的倒排索引,我们轻易对全文进行快速搜素。 系列文章 【Elasticsearch 7 搜索之路】(一)什么是 Elasticsearch? |
|