目前,电动汽车在国内外还处于发展阶段,相关规范、标准根据已投入运行的电动汽车充电设施数据,明确了电动汽车充电设施的电气设计参数如需要系数的选取、变压器规格的选取等。本文基于充电桩实际工作时的充电数据,分析了充电桩配电容量的计算,着重研究需要系数的合理取值。根据小区变压器负载率的情况,提出了电动汽车交流充电桩配比和可靠运行的优化设计方案,为建筑电气设计人员提供一定的参考。 1.1 充电桩的分类和参数 电动汽车充电设施包含非车载充电机和交流充电桩。 非车载充电机因其充电速度快的特点被称之为“快充”,其中单台输出功率可达到350kW,充满电动汽车大约只需要10min。而交流充电桩一般额定功率为7kW,与非车载充电机相比功率较低,充电时间较长,充满单台电动汽车的时间约为7~9h。 非车载充电机占地面积大,例如100kW的中型非车载充电机占地面积约为0.64m2,投资费用较大。目前大部分电动汽车都支持交直流两种充电方式,在公共充电桩(站)可采用非车载充电机快速充电,满足出行电量不足的情况;在住宅小区地下车库,通常设置交流充电桩满足业主返程后、闲暇之余长时间充电需求。 1.2 充电桩配电容量的计算 式中,S为单台充电桩的计算容量,kVA;P为单台充电桩的输出功率,kW;Kx为需要系数,此处取值为1;η为充电桩充电时的效率;cosφ为充电桩的功率因数。 住宅小区地下车库充电桩的总计算容量为所有充电桩输入计算容量的代数和,因此,充电桩计算负荷总容量如式(2)所示: 式中,SΣ为充电桩的输入总容量,kVA;Kx为充电桩同时系数,其值随着交流充电桩数量的变化而调整;P1、P2、Pn为各台充电桩的输出功率,kW;cosφ1、cosφ2、cosφ3——充电桩的功率因数;η1、η2、η3——电池充电的效率。 折合到变压器端,可得出车库变配电室变压器设备安装容量为: 式中,为非充电桩的安装容量,kVA ;为车库充电桩设备总容量,kVA ;为车库变压器安装容量,kVA。 1.3 充电桩对车库变压器容量设计指标分析 由式(2)可以看出,车库变压器安装容量值的确定,除建筑物内电气用电设备外,与车库内电动充电桩的计算容量直接相关,而电动充电桩计算容量的大小,关键是需要系数的准确获取,需要系数取值过大,会导致变压器计算容量值过高,不经济运行;取值过小,变压器配电设计不能满足充电用户用电需求。因此,确定需要系数对于准确计算充电设备容量及设计变压器规格具有重要意义。 需要系数由实际运行的功率获得: 式中,Pc为计算有功功率,称为需要功率,kW;Pe为额定功率,kW。 本文主要讨论交流充电桩需要系数的确定,通常根据实际运行设计需要系数,从而确定变压器额定容量的安装。但是在实际情况中,影响电动汽车充电功率的因素有很多,例如地下车库充电车位配比、用户行为及负荷波动时间的不确定性,因此需要研究获得准确的充电需求特性及其分布的规律。 ![]() ![]() 结合相关已运行的住宅小区地下车库充电桩的采集数据,对确定充电桩的需要系数提供了可靠依据。在计算地下车库的充电桩用电容量和设计变压器的安装容量时,应该考虑地下车库的规模、充电桩在车库的配比、充电车主的充电需求和习惯。 分析目前市场情况,大部分电动汽车的续航里程为400km左右,平均续航时间为3~5天,即使考虑到车主不会完全用光电量再充电,也可估计每个车主大约两天充电一次。此外,考虑单相交流充电柱的额定功率为7kW,而占大部分的电动汽车的功率为6.3kW。因此,这种情况下还可以降低计算地下车库需要系数Kx的取值。 充电桩容量计算中需要系数的取值是进行电气设计的重要依据,需要系数过高,变压器计算容量偏大,设备运行时变压器的负荷率就会偏低,反之亦然。因此,配电设计阶段应根据住宅小区及用户使用的情况再次合理调整需要系数的取值,供配电系统设计就能达到更加经济节能。 2.1 变压器负载率的计算及分析 变压器绕组的有功损耗与负载电流平方成正比,正常工作中不得长期运行在满载情况下,因此需要根据变压器实际运行时的负载状态分析。实际设备运行过程中,若负荷可以调整或者转移,应避免轻负载率0.2以下或重负载率0.85以上运行。 依据GB51348-2019《民用建筑电气设计标准》规定,配电变压器的长期工作负载率不宜大于85%,然而在实际投运建筑中,变压器的负载率往往在40%~50%之间甚至更低,与规范要求长期运行的负载率上限值之间尚存在一定的余量区间,可理解为变压器容量的余度,余度过大会造成变压器容量的浪费和不经济运行。 本文针对既有住宅小区改造扩容局限,无法为业主电动汽车配备充电桩专用变压器的情况,依据变压器长期运行负载率的实际值,合理利用其余度能力,配置相应数量的电动汽车充电桩,使其既能满足小区业主充电的要求,又能达到最佳负载率的目的。 2.2 交流充电桩冗余数量的计算及分析 ![]() 3.1 定时充电方案 对于住宅小区电动汽车充电用户来说,虽然电网运营企业给出峰、谷电价优惠政策,但实际情况中,由于业主的作息时间需要,不能按照电网用电谷值区间深夜出门充电。 基于电网推出的峰谷分时电价政策,本文提出一种地下车库充电桩定时充电方案,峰期用户可以设置充电延迟时间,在满足充电需要的前提下,避开电网峰值充电时段。还可以根据用户的特殊需要,设置保底充电时间和完整充电时间,使得峰谷分时电价优惠政策真正提高用户充电的效率。 3.2 自动充电方案 谷期充电策略与定时充电在性质上类似,用户设置谷期充电模式后根据电网负荷谷期自动充电,充电期间若遇到电网用户负荷峰值期间,会自动断电,峰值过后自动充电,该充电方案满足需求不紧张的用户。 两种充电方案都不限制充电时段,都从避开峰值的角度进行谷值充电,减轻建设单位用电负担的同时,减小了电网峰值供电压力,从而实现用户和建设单位的双赢。 阎宏,甘肃省建筑设计研究院有限公司工程师。 [1]阎宏,袁幼哲,柳全成.地下车库电动汽车充电桩配电设计及变压器容量优化的研究[J].智能建筑电气技术.2021,15(05):58-61. 本文刊登于《智能建筑电气技术》杂志 2021年10月刊 文章有删减 |
|