配色: 字号:
整理:导数不等式的证明
2022-06-09 | 阅:  转:  |  分享 
  
导数中的不等式证明

【考点点睛】

放缩法证明不等式在历年高考数学中是永恒的话题但它常考常新,学生却常考常怕。不等式的应用体现了一定的综合性,灵活多样性,。数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻体现数学的基本特点。尽管如此,只要我们深入去探索,总有方法规律可循,总会有拨得云开见日出的时刻!?

命题角度2放缩法

命题角度3切线法

命题角度4二元或多元不等式的证明思路

命题角度5函数凹凸性的应用

在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界.

【考点突破】

命题角度1构造函数

【典例1】()已知函数,若曲线与曲线的一个公共点是,且在点处的切线互相垂直.(1)求的值;

(2)证明:当时,.

(1),,

令,则





因为,所以,

所以在单调递增,,即,

所以当时,.



【典例2】(石家庄市2018届高三下学期4月一模考试)已知函数,在处的切线方程为.

(1)求;

(2)若,证明:.

【解析】(1),;

(2)由(1)可知,

由,可得,则,

当时,,

当时,设,则,

故在上单递增又以时,时,以在区间单递间单递增,即.

故.

【方法归纳】函数解析式中含有已知范围的参数,可以考虑借助于常识或已知的范围减少变量,对参数适当放缩达到证明的目标.

【典例3】(成都市2018届高中毕业班二诊理科)已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明:

【解析】(1);

(2)设数列的前项的和分别为,则

由于,解得;

同理,,

所以只需证明.

由(1)知时,有,即.

令,则,

所以,

所以;

再证明,亦即,

因为,,

所以只需证,

现证明.

令,则,

所以函数在上单调递减,,

所以当时,恒成立,

令,则,

综上,,

所以对数列分别求前项的和,得

.

【思路总结】待证数列不等式的一端是项之和(或积)的结构,另一端含有变量时,可以将它们分别视为两个数列的前项的和(或积),从而将不等式的证明转化为两个数列的对应项之间的大小关系的证明.

【典例4】(安徽省安庆市2018届重点中学联考)已知函数.

(1)求函数的单调区间;

(2)证明:当时,都有.

【解析】(1),

令,则,

当时,,所以,

当时,,所以,

所以函数在上单调递增,在上单调递减;

(2)要证明,即证,

令,则,

当时,,当时,,

所以函数在上单调递增,在上单调递减,,

所以.

要证,只需再证即可.

易证,当且仅当时取等号(证明略),所以,

综上所述,当时,都有.

【思路点睛】对于含有与型的超越函数,具体解决时须根据两类函数的特点,挖掘结构特征,灵活变形,脑中有“形”,注意重要不等式的合理代换.

命题角度3切线法

【典例5】(2018届安徽省太和中学三模)已知函数.

(1)求曲线在处的切线方程;

(2)求证:当时,.

【解析】(1),,

由题设得,

所以曲线在处的切线方程为,即;

(2)令,则,

当时,,当时,,

所以函数在上单调递减,在上单调递增,



所以函数在上单调递增,

由于曲线在处的切线方程为,,可猜测函数的图象恒在切线的上方.

先证明当时,.

设,则,

当时,,当时,,

所以在上单调递减,在上单调递增,

由,所以,

所以存在,使得,

所以当时,,当时,,

所以在上单调递增,在上单调递减,在上单调递增.

因为,所以,即,当且仅当时取等号,

所以当时,,

变形可得,

又由于,当且仅当时取等号(证明略),

所以,当且仅当时取等号.

【审题点津】切线放缩法值得认真探究,若第一小题是求曲线的切线方程,就要注意是否运用切线放缩法进行放缩解决问题.

命题角度4二元或多元不等式的解证思路

【典例6】(皖南八校2018届高三第三次联考)若均为任意实数,且,则的最小值为



【解析】由于均为任意实数,且,所以动点到定点的距离为定值1,亦即动点的轨迹是以

为圆心,半径的圆,

又表示与动点

的距离,而的轨迹是曲线



如图,,当且仅当共线,

且点在线段上时取等号,以为圆心作半径为的圆

与相切,切点是,此时的公切线与半径

垂直,,即,结合函数

与的图象可知,所以,

故的最小值为.正确答案为D.

【审题点津】多元代数表达式的最值问题要根据其整体的结构特征,结合多元各自变化的规律,转化为多个动点之间的对应关系,进而化“动”为“静”解决问题.

【变式训练】(2018年湖北省高三4月调考)设,其中,则的最小值为



【解析】由于表示点与点之间的距离,而点的轨迹是曲线,点的轨迹是曲线,

如图所示,又点到直线的距离为,

自然想到转化为动点到抛物线准线的距离,

结合抛物线的概念可得

,所以,当且仅当共线,

又以为圆心作半径为的圆与相切,切点是,此时的公切线与半径垂直,,即,所以,故.正确答案为C.

【能力提升】(2018年甘肃省高中毕业班第一次诊断性考试)对于任意,不等式恒成立,则实数的最大值为

【答案】.

命题角度4二元或多元不等式的解证思路

【典例7】(2018年安庆市二模)已知函数,曲线在点处的切线方程为.

(1)求实数的值;

(2)设分别是函数的两个零点,求证:.

【解析】(1);

(2),,,

因为分别是函数的两个零点,所以,

两式相减,得,



要证明,只需证.

思路一:因为,只需证.

令,即证.

令,则,

所以函数在上单调递减,,即证.

由上述分析可知.

【规律总结】这是极值点偏移问题,此类问题往往利用换元把转化为的函数,常把的关系变形为齐次式,设等,构造函数来解决,可称之为构造比较函数法.

思路二:因为,只需证,

设,则



所以函数在上单调递减,,即证.

由上述分析可知.

【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于(或)的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

思路三:要证明,只需证.

即证,由对数平均数易得.

【规律总结】极值点偏移问题中,如果等式含有参数,则消参,有指数的则两边取对数,转化为对数式,通过恒等变换转化为对数平均问题,利用对数平均不等式求解,此乃对数平均法.

【知识拓展】对于,则,其中称之为对数平均数.简证如下:不妨设,只需证明即可,即(下略).

【典例8】(A10联盟2018年高考最后一卷)已知函数.

(1)当时,方程在区间上有两个不同的实数根,求的取值范围;

(2)当时,设是函数两个不同的极值点,

证明:.

【解析】(1)因为,所以,即,

设,则,

所以在上单调递减,在上单调递增,

,当时,,当时,,

要使方程在区间上有两个不同的实数根,则,解得,

故的取值范围是;

【一题多解】本题也可以变形为,转化为过原点的直线与函数图象有两个交点问题,应用数形结合思想求解,直线与曲线相切对应所求范围的界点.

(2)由题意,,,

因为是函数两个不同的极值点,

不妨设,,即,

两式相减得.

要证,即证明,

只需证,即,亦即.

令,只需证当时,不等式恒成立,

设,则



易证,所以,

所以在上单调递减,,即.

综上所述,成立.

【审题点津】函数的拐点偏移问题的证明思路可以根据类似的结构特征,适当变形为两个变量之差(或比值)的关系,整体换元,构造函数,借助于导数的应用解决问题.

【典例9】(2018届合肥三模)已知函数有两个极值点(为自然对数的底数).

(1)求实数的取值范围;

(2)求证:,则,

设,则.

令,解得.

所以当时,时,.

①当时,,所以函数单调递增,没有极值点;

②当时,,且当时,;当时,.

此时,有两个零点,不妨设,则,

所以函数有两个极值点时,实数的取值范围是;

【答案速得】函数有两个极值点实质上就是其导数有两个零点,亦即函数与直线有两个交点,如图所示,显然实数的取值范围是.

(2)由(1)知,为的两个实数根,,在上单调递减.

下面先证,只需证.

由于,得,

所以.

设,则,

所以在上单调递减,

所以,,所以.

由于函数在上也单调递减,所以.

要证,只需证,

即证.

设函数,则.

设,则,

所以在上单调递增,,即.

所以在上单调递增,.

故当时,,则,

所以,亦即.

【规律总结】本题是极值点偏移问题的泛化,是拐点的偏移,

依然可以使用极值点偏移问题的有关方法来解决.只不过需要挖掘出拐点偏移中隐含的拐点的不等关系,如本题中的,如果“脑中有‘形’”,如图所示,并不难得出.

命题角度5函数凹凸性的应用

【典例10】(2018届合肥三模)已知函数有零点,函数有零点,且,则实数的取值范围是





解析:思路1:因为,如图所示,

结合函数图象,则,



若,则,不适合题意,则;当时,,所以,即,

所以实数的取值范围是.正确答案为C.

【评注】同理,,,所以,

故,即,所以实数的取值范围是.

思路2:因为函数有零点,所以的解分别为,

因为函数有零点,所以的解分别为,

令,①若,如图,总有,不适合题意;



②若,如图,总有,欲使,亦即,

所以,即,

两边平方,化简可得,所以.

所以实数的取值范围是.正确答案为C.

思路3:因为函数有零点,

所以的解分别为,

因为函数有零点,

所以的解分别为,

令,两个函数的交点的坐标分别为,如图所示,结合函数图象,欲使,则,所以实数的取值范围是.正确答案为C.

思路4:(特例法)令,则函数有零点,函数有零点,此时满足,因此排除B;

再令,则函数有零点,函数有零点,此时满足,因此排除A,D;

所以实数的取值范围是.正确答案为C.

命题角度5函数凹凸性的应用

【考法点拨】不等式恒成立问题中,许多试题的几何背景是曲线与切线静态或动态的上下位置关系,进而应用曲线的凸凹性可获得思路自然、过程简洁的图解.

【知识拓展】一般地,对于函数的定义域内某个区间上的不同

的任意两个自变量的值,

①总有(当且仅当时,取等号),

则函数在上是凸函数,其几何意义:函数的图象上的

任意两点所连的线段都不落在图象的上方.,则单调

递减,在上为凸函数;

②总有(当且仅当时,取等号),

则函数在上是凹函数,其几何意义:函数的图象上的

任意两点所连的线段都不落在图象的下方.,则单调递增,在上为凹函数.

【典例11】(安徽省太和中学2018届5月质检)已知函数,曲线在处的切线为.时,;

(2)求证:.的定义域为,

又,,所以该切线方程为.

设,则,

令,则,

当时,,所以在上单调递增,

又,所以,即在上单调递增,

所以,故时,;

(2)由(1)知:当时,.

令,则,

所以,

所以,

化简可得,得证.

【方法归纳】本题,其,,说明函数为凹函数,因此有.此类问题实质上,第(1)小题的研究正是为第(2)小题的解决而服务的,呈现“层层递进”的特点.



【典例12】(成都市2018届高中毕业班二诊文科)已知函数.

(1)当时,若关于的不等式恒成立,求的取值范围;

(2)当时,证明:.

【解析】(1)由,得恒成立,

令,则,

所以在上单调递减,在上单调递增,

所以的最小值为,

所以,即,故的取值范围是;

(2)有(1)知时,有,

所以.

①要证,可证,只需证,

易证(证明略),所以;

②要证,可证,

易证(证明略),由于,所以,

所以,

综上所述,当时,证明:.

【方法归纳】若第(1)小题是探求参数的范围问题,第(2)小题的解决往往运用第(1)小题所求范围的界点对于的不等关系进行放缩,此类问题实质就是应用函数凸凹性进行切线放缩法.

【典例13】(咸阳市2018届三模)已知函数,.

(1)若在上恒成立,求实数的取值范围;

(2)求证:.

【解析】(1)等价于,即,

记,则,

当时,,在上单调递增,由,,

所以,即不恒成立;

当时,时,,单调递增,不恒成立;

当时,,,在上单调递减,,所以,即恒成立;

故在上恒成立,实数的取值范围是;

(2)当时,在上成立,即,

令,则,

所以



所以

【方法归纳】当时,,由于在上单调递减,所以为凸函数,则切线在函数的图象的上方,所以.

【典例14】()函数相切.

()的值;

()证明:,.

【解析】().与曲线相切于点.,整理得,,……()

令,.时,,单调递增;当时,,单调递减.当时,值,,即.

故,此时.()①要证明,即证,

只需证.

由(),即,

因此,,…,.

,得证;

②要证明,即证,

只需证.

令,则时,,单调递减;当时,,单调递增.当时,值,,.得:

,,…,.,得证;

综上,.

【审题点津】第(2)小题待证不等式的证明途径只有从第(1)小题的探究切线的过程中挖掘,这是切线放缩法的拓展运用.

【典例15】(石家庄市2018届高中毕业班一模)已知函数在处的切线方程为.

(1)求;

(2)若方程有两个实数根,且,证明:.

【解析】(1);

(2)由(1)可知,,

设在处的切线方程为,易得,

令,,

则,

当时,,

当时,

设,则,

故在上单递增又以时,时,以在区间单递间单递增,即,所以,

设的根为则单递,故,

再者,设在处的切线程为易得,,

当时,,

当时,

令,则,

故在上单递增又以时,时,以在区间单递间单递增,即,所以,

设的根为则

又函数单递,故,

又,所.

【能力提升】结合函数的凸凹性应用切线放缩法证明不等式

必须做到“脑中有形”,结合示意图易得,

显然.脑海中有这样的示意图,我们的思路不就清晰了吗?

















-1-















献花(0)
+1
(本文系知识资料圈原创)