总述
survminer包是生物信息学中实现生存分析曲线绘制最常用的包,包含函数ggsurvplot(),还可使用ggplot2. ggsurvplot() 轻松绘制美观并且格式工整的生存曲线。同时还能给出p值,风险值等参数。
下载和安装
install.packages('survminer')
或者,也可以选择从GitHub上安装
if(!require(devtools)) install.packages('devtools')
devtools::install_github('kassambara/survminer')
加载安装好的包
library('survminer')
单一组别生存曲线的绘制
#调用生存曲线中另一常用的survival包
require('survival')
#survival包自带肺癌数据集:lung,查看数据样式
head(lung)
#survival包中的Sruv函数可以创建一个生存对象
fit <- survfit(Surv(time, status) ~ 1, data = lung)
#survival包中的survfit函数用Kaplan-Meier法进行生存曲线的拟合
ggsurvplot(fit, color = '#2E9FDF')

两组生存曲线的绘制
require('survival')
fit<- survfit(Surv(time, status) ~ sex, data = lung)
ggsurvplot(fit)

改变文字大小,字体和颜色
title = “Survival curve” | 设置标题 |
---|
font.main | 标题字体大小 | font.x | x轴标注字体大小 | font.y | y轴标注字体大小 | font.tickslab | 坐标轴数字大小 |
ggsurvplot(fit, title = 'Survival curve',
font.title = 18,
font.x = 16,
font.y = 16,
font.tickslab = 14)

-
同时改变文字大小,字体和颜色 - c([字号],[字体],[颜色])
- 括号中的任意一项可以省略,但是顺序不能改变
ggsurvplot(fit, title = 'Survival curve',
font.title = c(16, 'bold', 'darkblue'),
font.x = c(14, 'bold.italic', 'red'),
font.y = c(14, 'bold.italic', 'darkred'),
font.tickslab = c(12, 'plain', 'darkgreen'))

改变图例位置,图例标题和图例名称
ggsurvplot(fit, legend = 'bottom',
legend.title = 'Sex',
legend.labs = c('Male', 'Female'))

ggsurvplot(fit, legend = c(0.2, 0.2))

改变曲线类型和颜色
ggsurvplot(fit, size = 1, # 改变曲线的尺寸
linetype = 'strata', # 改变曲线的类型
break.time.by = 250, # 更改x轴的时间间隔
palette = c('#E7B800', '#2E9FDF'), # 自定义调色板
conf.int = TRUE, # 添加置信区间
pval = TRUE # 添加p值
)

ggsurvplot(fit, linetype = 'strata',
conf.int = TRUE, pval = TRUE,
palette = 'grey')

添加风险表
ggsurvplot(fit, pval = TRUE, conf.int = TRUE,
risk.table = TRUE, risk.table.y.text.col = TRUE)

res <- ggsurvplot(fit, pval = TRUE, conf.int = TRUE,
risk.table = TRUE)
res$table <- res$table + theme(axis.line = element_blank())
res$plot <- res$plot + labs(title = 'Survival Curves')
print(res)

扩大x轴的坐标范围
ggsurvplot(fit,
pval = TRUE, conf.int = TRUE,
risk.table = TRUE,
risk.table.col = 'strata',
ggtheme = theme_bw(), #改变ggplot2的主题(背景)
palette = 'Dark2',
xlim = c(0, 600))#选取特定的x轴坐标范围

Transform survival curves
累积发病率图
ggsurvplot(fit, conf.int = TRUE,
palette = c('#FF9E29', '#86AA00'),
risk.table = TRUE, risk.table.col = 'strata',
fun = 'event')

危险率函数
ggsurvplot(fit, conf.int = TRUE,
palette = c('#FF9E29', '#86AA00'),
risk.table = TRUE, risk.table.col = 'strata',
fun = 'cumhaz')

Arbitrary function
ggsurvplot(fit, conf.int = TRUE,
palette = c('#FF9E29', '#86AA00'),
risk.table = TRUE, risk.table.col = 'strata',
pval = TRUE,
fun = function(y) y*100)

多组生存曲线的绘制
ggsurvplot(fit2, pval = TRUE,
break.time.by = 800,
risk.table = TRUE,
risk.table.col = 'strata',
risk.table.height = 0.5,
ggtheme = theme_bw(),
legend.labs = c('A', 'B', 'C', 'D', 'E', 'F'))

参考网站和相关推荐
- survminer R package: Survival Data Analysis and Visualization
- 生存分析与R
|