Vol.1,No.2徐旻等院智能化无人机植保作业关键技术及研究进展 33 KeytechnologyanalysisandresearchprogressofUAV intelligentplantprotection 1,21,21,21,21,2 MinXu,RuiruiZhang,LipingChen,QingTang,GangXu 渊1.100097, 2.100097 UAVplantprotectionoperationfacesverycomplicatedenvironmentalconditions.Ononehand,itsultralowaltitude operationsarevulnerabletogroundstructuresandbasichydropowerfacilities;ontheotherhand,theeffectivenessofplant protectionoperationisstrong,anditisnecessarytospraythepesticidestothespecificpartsofcropsattheprescribedtimesoasto ensuregoodpesticideapplicationeffect.Atpresent,UAVplantprotectiontechnologymainlyreferstotheexistingmature technologyandflightplatformingeneralaviationfieldtobasically"flyandspray".However,thelackofpenetratingresearchand theoreticalguidanceonenvironmentalperceptioninfarmlandoperation,themovementmechanismofdropletsundertherotor airflow,andthepenetrabilityofthedroplettodifferentcropscanopyleadtolowpenetrationrateoftheUAVplantprotection operation,easydrifting,frequentaccidents,largedamageprobabilityandlowcomprehensiveoperationalefficiency.Benefiting fromthebreakthroughsinartificialintelligence,parallelcomputingtechnologyandintelligenthardware,theUAVplantprotection technologyisdevelopinginthedirectionofintellectualization,systematizationandprecision.Thereal-timeperceptionofthe environmentundernonestablishedconditions,intelligentjobdecisionmethodbasedonintelligentrecognitionofcropdiseases andpests,thecontrolofthetoward-targetpesticidesprayingcontrolbasedonthevariableofwindfielddropletdepositionmodel andthedatabasedjobevaluationsystemhavegraduallybecomethekeytechnologyoftheUAVintelligentplantprotection.The manuscriptanalyzedandsummarizedtheresearchstatusandtechnicalachievementsinthefieldofUAVintelligentplant protectionfromthefieldinformationperception,themodelingandoptimizationcontrolofaccuratepesticideapplication,the evaluationandmonitoringoftheoperationeffect.Basedontheexistingresearch,theresearchalsopredictedthedevelopment trendofthekeytechnologiesofintelligentUAVplantprotectioninthefuture.Theclusteringmethodofhyper-spectralimage acquisitionandcomputationalintelligencebaseddeeplearningrecognitionwillbecomethekeytechnologyforreal-timeand efficientacquisitionofcroptargetinformationinplantprotectionwork,whichgreatlyimprovestheaccuracyofremotesensing informationinversionrecognition;machinevisionandmultimachinecooperativesensingtechnologycanacquiredynamic informationoffieldoperationatmultiplelevelsandtime;thehighprecisiondropletspectrumcontroltechnologyindependently controlledbynozzledesignandtheprecisionvariablesprayingcontroltechnologybasedonthewindfieldmodelcanfurther improvethedropletdepositioneffectandreducetheliquiddrifting;thebreakthroughofhighaccuracymeshsolutiontechnology willchangethepredictionmodeofdropletdriftfromartificialexperiencejudgmenttocomputersimulationandnumerical deduction;thejobpathplanningtechnologywillgreatlyimprovetheefficiencyofmultimachineandmultiareaoperationand reducethedistanceofinvalidoperation;thejobqualityevaluationbasedonthereal-timedataofthesensorandtheoperation supervisionsystemoflargedatatechnologywillreplacepeopletoeffectivelycontroltheprocessoftheUAVplantprotection operation,achievedataandtransparencyofplantprotection,andensuretheprocessisobservableandcontrollable. UAV;plantprotection;intelligence;sensing;spraying |
|