韩贝 孙思敏 孙伟男 杨细燕* 张献龙 华中农业大学作物遗传改良国家重点实验室,湖北武汉 430070 摘要 Abstract 在体细胞胚胎发生过程中,通过不同激素的配合使用可以有效调控体细胞胚胎发生的各个发育阶段。比如,通过调节生长素(auxin)与细胞分裂素(cytokinin,CTK)比率促进脱分化和愈伤增殖、通过添加低浓度的乙烯(ethylene)促进体细胞胚胎发生、通过赤霉素(gibberellins,GAs)调控胚性培养物到球形胚的转化、通过添加脱落酸(abscisic acid,ABA)来提高体细胞胚的质量等。外源激素对体细胞胚胎的作用主要是通过胞外或胞内的激素受体将外界刺激信号转到核内,从而调控基因的表达,启动发育程序。 1.1 生长素信号传导及体细胞胚胎发生 图1 生长素信号传导及体细胞胚胎发生 Fig. 1 Auxin signaling and somatic embryogenesis 1.2 细胞分裂素信号与愈伤组织的增殖 1.3 乙烯信号与体细胞胚胎发生 理论上所有离体植物细胞在合适的外界环境下均可表现全能性。外界环境因素(特别是逆境因素)是体细胞胚胎发生的重要影响因素。逆境因子(包括机械损伤)在体细胞胚胎发生的几个主要阶段都起着重要的作用,很多研究者都将逆境因子的调控作为优化体细胞胚胎发生体系的重要手段。在现有的诱导愈伤组织体系中,培养基多采用MS培养基,相对于维持植株正常生长或萌发胚生根成苗的低糖、低盐、低渗的SH培养基及1/2MS培养基来说,MS培养基无机盐含量较高,微量元素种类较全,浓度也较高。另外,很多物种,包括胡萝卜、苜蓿、烟草等,均有通过利用逆境处理来促进体细胞胚胎形成及发育的研究,涉及到的逆境因素也多种多样,主要有ABA处理、饥饿处理、渗透胁迫、高温处理等[14-15]。 图2 机械损伤通过调节因子WINs调控愈伤组织形成 Fig. 2 Mechanical damage regulates callus formation through the regulatory factor WINs 虽然体细胞胚胎发生过程受诸多外界环境因素的影响,但归根结底是在各种因素的作用下,体细胞中某些特异的基因启动表达,从而使体细胞脱分化并再分化转变为胚性细胞。许多研究人员致力于解析体细胞胚胎发生过程的相关基因,目前已鉴定和克隆了大量与体细胞胚胎发生相关的转录因子基因,其中许多参与调节合子胚发生、分生组织分化和维持的转录因子都在体细胞胚胎发生过程中起着重要用。 3.1 核因子Y (nuclear factor Y, NF-Y) 3.2 B3-结构域转录因子 3.3 AP2/ERF结构域蛋白 3.4 同源异形域转录因子 4.1 类受体激酶与体细胞胚胎发生 4.2 钙信号与体细胞胚胎发生 5.1 阿拉伯半乳糖蛋白 5.2 脂质转运蛋白 6.1 DNA甲基化 6.2 组蛋白甲基化 组蛋白甲基化由组蛋白甲基转移酶完成的。拟南芥中,组蛋白甲基转移酶PRC2通过H3K27me3来抑制相关基因的表达,从而促进细胞分化,反之则引起细胞脱分化,诱导体细胞胚胎发生[66]。在拟南芥中PRC2 (polycomb repressive complex 2)基因(CURLY LEAF,CLF和SWINGER,SWN)或(VERNALIZATION 2,VRN2和EMBRYONIC FLOWER 2,EMF2)双突变体在茎尖脱分化形成愈伤组织,间接导致体细胞胚胎发生并形成异位根[67],并且与野生型相比,PRC2的突变体在营养组织中显示出更高的体细胞胚胎诱导能力[68]。大部分胚性相关基因LEC1、LEC2、AGL15和BBM以及分生组织调节因子STM、WUS和WOX5等基因的染色质区域都含有H3K27me3等甲基化位点[69]。而PRC1和PRC2与胚胎发生转录抑制因子VAL1和VAL2等互作,并通过表观修饰抑制胚胎发生相关靶标基因的表达从而抑制愈伤组织的形成和体细胞胚胎发生。除了H3K27me3在体细胞胚胎发生发挥功能外,在拟南芥还发现赖氨酸特异性去甲基酶LDL3可以在愈伤组织形成过程中特异性消除H3K4me2,进一步使愈伤组织具有芽分化的能力[70]。 6.3 组蛋白去乙酰化 6.4 miRNA的调控作用 本研究由国家重点研发计划(2018YFD1000907)项目资助。 *通信作者: 杨细燕, E-mail: yxy@mail.hzau.edu.cn 第一作者联系方式: E-mail: bhan_z@163.com 参考文献 [1] Yang X Y, Zhang X L, Yuan D J, Jin F Y, Zhang Y C, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol,2012, 12: 110. [2] Lee H W, Kim N Y, Lee D J, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol, 2009, 151: 1377–1389. [3] Fan M Z, Xu C Y, Xu K, Hu Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res, 2012, 22: 1169–1180. [4] Lee K, Park O-S, Seo P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J, 2018, 95: 961–975. [5] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848–857. [6] Mendez-Hernandez H A, Ledezma-Rodriguez M, Avilez-Montalvo R N, Juarez-Gomez Y L, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas V M. Signaling overview of plant somatic embryogenesis. Front Plant Sci, 2019, 10: 77. [7] Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 1957, 11: 118–130. [8] Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294: 1519–1521. [9] Su Y H, Liu Y B, Bai B, Zhang X S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci, 2015, 5: 792. [10] Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of organogenesis and somatic embryogenesis by ethylene: an overview. Plants (Basel), 2021, 10: 1208. [11] Chatfield S P, Raizada M N. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep, 2008, 27: 655–666. [12] Zheng Q L, Zheng Y M, Perry S E. AGAMOUS-Like15 Promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol, 2013, 161: 2113–2127. [13] Wang L C, Liu N, Wang T Y, Li J Y, Wen T W, Yang X Y, Lindsey K, Zhang X L. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot, 2018, 69: 1081–1093. [14] Langhansova L, Konradova H, Vanek T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep, 2004, 22: 725–730. [15] Stasolla C, Yeung E C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult, 2003, 74: 15–35. [16] Marhava P, Hoermayer L, Yoshida S, Marhavy P, Benkova E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell, 2019, 177: 957–969. [17] Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Sugimoto K. WIND1 promotes shoot regeneration through transcriptional activation of enhancer of SHOOT REGENERATION1 in Arabidopsis. Plant Cell, 2017, 29: 54–69. [18] Ikeuchi M, Favero D S, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular mechanisms of plant regeneration. Annu Rev Plant Biol, 2019, 70: 377–406. [19] Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, de Veylder L, Sakakibara H, Sugimoto K. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol, 2017, 175: 1158–1174. [20] Bucher P, Trifonov E N. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn, 1988, 5: 1231–1236. [21] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Munoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710–E6719. [22] Kwong R W, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003, 15: 5–18. [23] Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195–1205. [24] Orlowska A, Igielski R, Lagowska K, Kepczynska E. Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell Tiss Organ Cult, 2017, 129: 119–132. [25] Zhu S P, Wang J, Ye J L, Zhu A D, Guo W W, Deng X X. Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis. Plant Cell Tiss Organ Cult,2014, 119: 1–13. [26] Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063–8070. [27] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004, 7: 373–385. [28] Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci, 2019, 10: 673. [29] Stone S L, Braybrook S A, Paula S L, Kwong L W, Meuser J, Pelletier J, Hsieh T-F, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc Natl Acad Sci USA, 2008, 105: 3151–3156. [30] Zhang Z Y, Zhao H, Li W, Wu J M, Zhou Z H, Zhou F, Chen H, Lin Y J. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol, 2019, 61: 1134–1150. [31] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848–857. [32] Mathew M M, Prasad K. Model systems for regeneration: Arabidopsis. Development, 2021, 148: dev195347. [33] Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol, 2010, 73: 481–492. [34] Schoof H, Lenhard M, Haecker A, Mayer K F X, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635–644. [35] Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349–359. [36] Zhang T Q, Lian H, Zhou C M, Xu L, Jiao Y, Wang J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell, 2017, 29: 1073–1087. [37] Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2009, 106: 16529–16534. [38] Zhang Z, Tucker E, Hermann M, Laux T. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 2017, 40: 264–277. [39] Hassani S B, Trontin J F, Raschke J, Zoglauer K, Rupps A. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Front Plant Sci, 2022, 13: 838421. [40] Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561–22571. [41] Elhiti M, Tahir M, Gulden R H, Khamiss K, Stasolla C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot, 2010, 61: 4069–4085. [42] Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049–2062. [43] Li H Q, Cai Z P, Wang X J, Li M Z, Cui Y W, Cui N, Yang F, Zhu M S, Zhao J X, Du W B, He K, Yi J, Tax F E, Hou S W, Li J, Gou X P. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Mol Plant, 2019, 12: 984–1002. [44] Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803–816. [45] Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep, 2017, 7: 12368. [46] Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R. Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta, 1998, 206: 504–514. [47] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29: 36–57. [48] Anil V S, Rao K S. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol, 2000, 123: 1301–1311. [49] Pandey G K, Grant J J, Cheong Y H, Kim B-G, Li L G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1: 238–248. [50] Letarte J, Simion E, Miner M, Kasha K J. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep, 2006, 25: 877–877. [51] Perez-Perez Y, Carneros E, Berenguer E, Solis M T, Barany I, Pintos B, Gomez-Garay A, Risueno M C, Testillano P S. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of quercus suber. Front Plant Sci, 2019, 9: 1915. [52] Kreuger M, Vanholst G J. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta, 1995, 197: 135–141. [53] Makowska K, Kaluzniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tiss Organ Cult, 2017, 131: 247–257. [54] Serpe M D, Nothnagel E A. Effects of yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta, 1994, 193: 542–550. [55] van Hengel A J, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries S C. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol, 2001, 125: 1880–1890. [56] Cheng C S, Chen M N, Lai Y T, Chen T, Lin K F, Liu Y J, Lyu P C. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins, 2008, 70: 695–706. [57] Sterk P, Booij H, Schellekens G A, Vankammen A, Devries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907–921. [58] Dodeman V L, Ducreux G, Kreis M. Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot, 1997, 48: 1493–1509. [59] Zeng F C, Zhang X K, Zhu L F, Tu L L, Guo X P, Nie Y H. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol, 2006, 60: 167–183. [60] Francois J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thevenot P, Gomes E. Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Funct Plant Biol, 2008, 35: 394–402. [61] Wojcikowska B, Wojcik A M, Gaj M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci, 2020, 21: 7. [62] Bravo S, Bertin A, Turner A, Sepulveda F, Jopia P, Jose Parra M, Castillo R, Hasbun R. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don. Plant Cell Tiss Organ Cult, 2017, 130: 521–529. [63] Nic-Can G I, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas V M, Rojas-Herrera R, De-la-Pena C. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One, 2013, 8: e72160. [64] Grzybkowska D, Moronczyk J, Wojcikowska B, Gaj M D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul, 2018, 85: 243–256. [65] Shibukawa T, Yazawa K, Kikuchi A, Kamada H. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region. Gene, 2009, 437: 22–31. [66] Nakamura M, Batista R A, Kohler C, Hennig L. Polycomb Repressive complex 2-mediated histone modification H3K27me3 is associated with embryogenic potential in Norway spruce. J Exp Bot, 2020, 71: 6366–6378. [67] Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263–5276. [68] Mozgova I, Munoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet, 2017, 13: e1006562. [69] Liu J, Deng S, Wang H, Ye J, Wu H-W, Sun H X, Chua N H. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol, 2016, 171: 424–436. [70] Ishihara H, Sugimoto K, Tarr P T, Temman H, Kadokura S, Inui Y, Sakamoto T, Sasaki T, Aida M, Suzuki T. Primed histone demethylation regulates shoot regenerative competency. Nat Commun, 2019, 10: 1786. [71] Kumar V, Thakur J K, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci, 2021, 78: 4467–4486. [72] Bie X M, Dong L, Li X H, Wang H, Gao X-Q, Li X G. Trichostatin a and sodium butyrate promotes plant regeneration in common wheat. Plant Signal Behav, 2020, 15: 12. [73] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149–161. [74] Wojcikowska B, Botor M, Moronczyk J, Wojcik A M, Nodzynski T, Karcz J, Gaj M D. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci, 2018, 9: 1353. [75] Moronczyk J, Braszewska A, Wojcikowska B, Chwialkowska K, Nowak K, Wojcik A M, Kwasniewski M, Gaj M D. Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of Arabidopsis. Cells, 2022, 11: 863. [76] Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu C W, Yang S G, Dong S, Ruan J X, Yuan L B, Zhang Z, Zhao L M, Li C L, Chen H H, Cui Y H, Wu K Q, Huang S Z. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell, 2013, 25: 134–148. [77] Furuta K, Kubo M, Sano K, Demura T, Fukuda H, Liu Y G, Shibata D, Kakimoto T. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol, 2011, 52: 618–628. [78] Yang X, Wang L, Yuan D, Lindsey K, Zhang X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64: 1521–1536. [79] Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580: 5111–5116. [80] Long J, Liu C, Feng M, Liu Y, Wu X, Guo W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot, 2018, 69: 2979–2993. [81] Liu Z, Ge X, Qiu W, Long J, Jia H, Yang W, Dutt M, Wu X, Guo W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci, 2018, 277: 121–131. [82] Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel), 2019, 8: 38. [83] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998–2015. [84] Heidmann I, de Lange B, Lambalk J, Angenent G C, Boutilier K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep, 2011, 30: 1107–1115. [85] Maher M F, Nasti R A, Vollbrecht M, Starker C G, Clark M D, Voytas D F. Plant gene editing through de novo induction of meristems. Nat Biotechnol, 2020, 38: 84–89. [86] Loyola-Vargas V M. The history of somatic embryogenesis. In: Loyola-Vargas V M, Ochoa-Alejo N, eds. Somatic Embryogenesis: Fundamental Aspects and Applications. Cham: Springer International Publishing, 2016. pp 11–22. 本文已在中国知网网络首发,网址: https://kns.cnki.net/kcms/detail/11.1809.s.20220808.1609.002.html 期刊简介 |
|
来自: 昵称37581541 > 《学术动态》