分享

【综述】肠道菌群在减重手术后的变化及作用

 蔚蓝色淼 2022-08-11 发布于河北




 摘要 

肠道菌群对机体代谢起重要的调控作用,减重手术作为目前治疗肥胖及其合并症最有效的方法能够显著改变肠道菌群。术后肠道菌群的变化具有时空特异性,术后不同时间点上和不同肠段中的菌群组成与结构不尽相同。减重术后肠道菌群改变的原因可能在于手术引起的胃肠道解剖及相应生理功能的变化。通过移植术后菌群发现肠道菌群参与减重手术改善代谢,其中的机制可能和菌群-宿主相互作用的众多分子途径有关。同时,术后肠道菌群的变化还与减重手术患者的预后相关。此外,减重术后所引起的菌群变化不仅与改善肥胖和代谢有关,还可能存在潜在危害,其中减重手术后的营养吸收不良与肠道菌群的改变密切相关。因此,阐明减重术后肠道菌群的变化特征及相关机制有助于深入理解菌群在减重手术中的作用和影响,本文为此作一综述。




肥胖人群的比例在世界范围内不断上升。据统计,2015年已有6.037亿成年人肥胖[1]。肥胖与众多的慢性疾病有关,包括心血管疾病、糖尿病,慢性肾脏疾病和肿瘤等[2-3]。生活方式干预、药物治疗和减重手术是改善病态肥胖的3种主要方法[4]。目前,以胃旁路手术(Roux-Y gastric bypass,RYGB)和袖状胃切除术(sleeve gastrectomy,SG)为代表的减重手术是治疗肥胖最有效的方法,手术不仅能够显著降低体质量,还可有效缓解肥胖合并症如2型糖尿病和非酒精性脂肪性肝病等代谢性疾病[5]。然而,手术改善代谢的机制至今仍未完全明确[6]

在人体肠道中,大约有3万亿个细菌,这些细菌与机体代谢密切相关[7]。作为一类消化道手术,减重手术可显著改变肠道菌群的组成和结构,但减重手术后肠道菌群的具体变化以及术后菌群的作用仍需深入研究。本文通过综述RYGB和SG术后肠道菌群的时空变化特征及其与手术效果之间的关系,进一步阐明肠道菌群在减重手术改善代谢中的作用。


 肠道菌群在减重术后不同时间上的主要变化

人类的肠道中共有50多个菌门,其中厚壁菌门、拟杆菌门、放线菌门、梭菌门、变形菌门、疣菌门和蓝藻门是7个主要的细菌门类。其中,拟杆菌门和厚壁菌门占总数的90%以上[8]。在肠道菌群的变化中,存在短期和长期的变化[9]。由于减重术后患者的饮食调整、用药变更及肠内环境变化等因素,使得术后不同时间点上的肠道菌群变化也不尽相同。

对于RYGB,文献报道早在术后1周,患者的肠道菌群即发生改变,双歧杆菌科丰度降低,链球菌科和肠杆菌科丰度增加[10]。术后3个月则发现,拟杆菌属的普氏菌组和大肠杆菌丰度增加,而乳酸菌属和双歧杆菌属水平下降[11]。也有研究发现,RYGB术后3个月韦荣球菌属和嗜黏蛋白-艾克曼菌属增多,并持续至术后6个月,两者可能是RYGB术后的特征性菌属[12]。长期随访则发现,在术后10~12年,患者肠道菌群中有更高丰度的变形菌门、疣微菌科属和链球菌科,而类杆菌丰度则相对下降,表明肠道菌群在RYGB术后发生持久改变[13]。而且研究表明,RYGB相对于SG能够带来更明显的肠道菌群改变,但SG术后也同样能引起肠道菌群的变化[14]

早在术后1周,SG患者的肠道菌群即发生变化,如双歧杆菌科丰度降低[10]。在SG术后3个月,则有艾克曼菌属和布劳菌丰度升高,其中后者被认为可能是SG的特征性菌属[12]。在SG术后6个月,还有其他微生物的丰度增加,如理研菌科、克里斯滕森菌科和梭状芽孢杆等[15]。而SG术后远期肠道菌群是否有持久变化,目前还缺乏研究。总之,肠道菌群在减重术后不同时间点上的变化不尽相同。表1归纳了近几年减重手术后肠道菌群变化的相关研究[10-13,15-19]

图片


 肠道菌群在减重术后不同空间上的主要变化

由于肠道各部位激素水平和解剖的差异,不同肠段中菌群的组成和功能不尽相同。如空肠主要支持革兰阳性需氧菌和兼性厌氧菌的生长,包括乳酸菌、肠球菌和链球菌。而从末端回肠到结肠,主要以厌氧菌和革兰阴性菌为主[20]。不同部位的菌群对机体的代谢有着不同的作用,例如空肠的肠道菌群与脂质的消化吸收有关[21];而结肠中,肠道菌群产生的短链脂肪酸与结肠的肠道屏障和炎性改变有关[22]。由于临床上菌群采样的限制,缺乏除粪便之外其他部位菌群的研究,故减重术后不同肠段中菌群变化的结果主要来自动物实验,且集中于RYGB模型。研究发现,大鼠RYGB术后回肠微生物群落丰富度升高,肠杆菌目与疣微菌目丰度增加、动物乳杆菌与罗伊乳杆菌丰度降低,而盲肠和结肠中的菌群变化则较回肠更显著,其中双歧杆菌、链球菌、梭杆菌、细绒毛菌和肠球菌等菌属的丰度均呈上升趋势,提示手术可能对大肠菌群的影响更强[23-25]。这也表明术后肠道菌群的变化可能具有空间特异性。


肠道菌群在减重术后改变的可能原因和机制

虽然已有大量研究报道了减重术后肠道菌群的变化,但术后菌群改变的原因和机制还未明确。饮食作为目前已知影响肠道菌群最重要的因素,很可能在导致减重术后患者菌群的变化中起重要作用[26]。术后患者的饮食习惯、食物偏好、进食频率和速度以及用餐节律等任一方面的细微改变,都有可能引起肠道菌群的显著变化[27]。然而,在减重手术的肥胖动物模型中,即使在术前、术后都进食高脂饮食且手术组和假手术组同笼饲养,手术组动物也有显著的菌群变化,表明手术本身可以改变菌群[28]。其中的原因,可能与术后胃肠道解剖变化及随之改变的消化道生理功能有关。菌群生长于宿主肠道,受到肠内环境的影响,而减重手术则可能通过改变肠内环境影响菌群,如术后胃酸分泌减少、胃排空加快、胃肠激素分泌增加、胆汁酸肠肝循环变化以及局部免疫炎症改善等都可能通过改变肠道菌群的营养、代谢及生存环境来对菌群造成选择性压力,继而改变菌群的组成和功能。目前,在此方面有关胆汁酸的研究较多。胆汁酸由于其自身的抗菌活性被发现可调控肠道菌群。直接予外源性胆汁酸干预或抑制内源性胆汁酸合成都会改变肠道菌群的组成,提示胆汁酸可能介导手术改变肠道菌群[29-30]。同时,减重手术可引起餐后肠道胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)分泌增加,近期有研究发现GLP-1也可能参与手术改变肠道菌群[31]。直接给予小鼠GLP-1受体激动剂,可显著改变肠道菌群的整体结构和组成丰度,提示GLP-1可能是术后菌群变化的机制之一[32]。与GLP-1类似,在减重手术后,餐后血液循环中YY肽水平升高,且其在一定程度上也能够影响肠道菌群的组成[33]。除肠道局部之外,减重手术还可改善全身其他组织和器官的炎症和生理功能[34-35]。而这些肠外组织和器官的功能变化是否会影响肠道菌群还有待进一步研究。总之,减重手术后肠道菌群的改变受众多因素影响,究竟何种因素起决定性作用尚无定论。

    
  肠道菌群参与手术改善代谢

近期的基础研究显示,肠道菌群或可参与手术改善代谢。借助无菌动物模型,Liou等[36]率先证实了RYGB术后的肠道菌群可促进体质量和体脂下降。Tremaroli等[19]则进一步发现,RYGB患者术后远期的肠道菌群也可促进改善体脂;而将糖尿病大鼠RYGB术后的盲肠内容物移植入无菌小鼠,可使餐后葡萄糖峰值降低,表明RYGB术后的肠道菌群还能促进血糖改善。同样,在SG动物模型中,围手术期使用抗生素可明显削弱手术减重和调节血糖的效果[37]。而将术后盲肠富集菌群移植入抗生素处理后的糖尿病大鼠中还可显著改善葡萄糖耐量,表明肠道菌群在SG改善肥胖和调节血糖中也发挥了一定的作用[38]。近期有关肠道菌群参与手术改善代谢的论证研究[19,24,36,39-40],见表2。

图片


  肠道菌群参与手术改善代谢可能的机制

如上述,肠道菌群在减重手术改善代谢中起重要作用,其中的机制可能和参与菌群—宿主互作的众多分子途径有关。例如,肠道菌群的主要代谢产物——短链脂肪酸被发现可能参与其中。由菌群酵解膳食纤维所产生的短链脂肪酸能够影响肠道局部及其他代谢相关组织和器官的免疫、神经和内分泌等功能,与肥胖等代谢紊乱密切相关[41-42]。近期研究发现,RYGB术后循环短链脂肪酸浓度和组成都发生显著变化,并与术后的代谢改善显著相关,提示短链脂肪酸或是菌群介导手术改善肥胖的机制之一[43]。与此同时,肠道菌群的另一类代谢产物——支链氨基酸,也被发现与肥胖和胰岛素抵抗强相关,而通过药物促进支链氨基酸降解则可改善代谢紊乱。研究显示,减重术后循环支链氨基酸水平显著降低,提示手术可能通过改变菌群减少相关支链氨基酸产生影响代谢[44]。然而,最近的文献则发现,增加支链氨基酸摄入或抑制其降解并不影响SG改善代谢的效果,表明支链氨基酸并非手术改善代谢所必需[45]。此外,肠道菌群的内毒素等可引起体内代谢组织和器官的低等级炎症反应,造成胰岛素抵抗等紊乱,减重手术后其水平显著降低,各相关代谢组织和器官的炎性状态好转,胰岛素抵抗改善,表明术后菌群内毒素减少可能参与手术改善代谢[46]。近期的研究还重点关注了术后菌群与胆汁酸的相互调控介导手术改善代谢的作用。胆汁酸可影响肠道菌群的组成和结构,而肠道菌群亦可通过胆汁酸的次级代谢影响其肠肝循环[20]。既往文献已证实胆汁酸的两类受体——法尼酯衍生物X受体(farnesoid X receptor, FXR)和G蛋白偶联受体TGR5都是减重手术的必要作用靶点[47-48]。而最新的研究则进一步发现,术后的肠道菌群可通过特定胆汁酸合成作用于肠道和肝脏的胆汁酸受体,继而调控宿主的糖脂代谢,介导手术改善肥胖[40]


  术后肠道菌群的变化与预后相关

减重术后体质量反弹或手术效果欠佳是大部分患者的担忧。导致体质量反弹的因素有很多,包括手术相关因素、行为因素(如不遵守饮食和体育活动建议)和生物因素(如肠道激素)[49]。基于肠道菌群在手术改善肥胖中的重要作用,术后的菌群变化或与临床减重预后有关。在一项RYGB术后5年的随访研究中,未复胖患者相较于复胖患者有更高丰度的嗜黏蛋白-艾克曼菌属,深入分析患者术后的核心微生物分类,发现减重效果较好者的肠道菌群多样性更好,其体内有10个属来自厚壁菌门,5个属来自变形菌门,1个属来自拟杆菌门;相反,效果不理想者体内仅有变形菌门4个属和厚壁菌门1个属,而在体质量反弹者体内仅有拟杆菌门的1个属[50]。SG术后也有类似的发现,在多余体质量下降(excess weight loss,EWL)≥50%的患者体内有更丰富的厚壁菌门,而在EWL<50%的患者体内则有更多的拟杆菌门[51]。此外,有研究还发现,术后肠道菌群变化与糖尿病预后有关,在RYGB术后1年,糖尿病缓解的患者相对于未缓解患者存在5个菌属的丰度差异[52]。另一项研究显示,RYGB和SG术后1年糖尿病缓解的人群体内肠道罗斯拜瑞氏菌丰度增加,而未缓解人群则在术前有更高丰度的脱硫弧菌属,表明减重手术的预后不仅与术后的菌群特征有关,可能还与术前菌群特征相关[14]


  减重术后肠道菌群改变的潜在危害

减重手术在有效改善代谢的同时,会因消化道生理解剖的变化造成相关的并发症。多项临床试验表明,RYGB术后患者小肠细菌过度生长(small intestinal bacterial overgrowth,SIBO)情况显著增加[53-54];可能是由术后肠腔内pH值升高和溶解氧增加所致,术后肠道内环境变化使兼性需氧微生物更容易生长。研究指出,SIBO不仅与术后的恶心、呕吐、腹胀和腹泻等消化道症状密切相关,还与术后长期的营养元素缺乏有关,如维生素、铁和叶酸等[55-56]。术后小肠菌群的过度生长能够刺激炎性因子合成并引起炎性反应,从而使绒毛萎缩,营养素吸收受损[57]。小肠微生物数量的增加还会与宿主竞争腔内蛋白质,继而影响氨基酸和多肽的吸收[58]。对于减重术后出现的SIBO,给予抗生素和益生菌治疗均有较好的疗效,有研究对2例RYGB术后SIBO阳性患者予抗生素治疗,结果显示,可改善其营养状况[59]。此外,另一项研究显示,RYGB术后SIBO能使硫胺素吸收下降,给予抗生素治疗可改善硫胺素吸收障碍[60]。给予益生菌治疗也是有效的治疗方法,在RYGB术后给予益生菌治疗不仅能够增加维生素B12的吸收,还能进一步提高减重手术疗效[61];益生菌治疗还能减少腹痛腹胀等腹部症状[62]。根据目前的文献报道尚未发现SG术后SIBO情况。


 小结

减重手术作为如今改善肥胖及其合并症最有效的方法,能显著改变肠道菌群。深入研究术后肠道菌群变化的时空特征及其参与改善代谢的分子机制,可帮助临床医生和科研人员发现具有改善代谢潜力的微生物及相关分子产物,进而促进研发出新的治疗手段,以非手术的方式有效改善肥胖,此外,通过明确术前术后肠道菌群的变化与手术预后及并发症的关系,能为日后进一步提高手术疗效与防治术后并发症奠定科学基础。

利益冲突  所有作者均声明不存在利益冲突

滑动阅读参考文献

[1] Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017,377(1):13-27. DOI: 10.1056/NEJMoa1614362.

[2] Gallagher EJ, LeRoith D. Obesity and Diabetes: The increased risk of cancer and cancer-related mortality[J]. Physiol Rev, 2015,95(3):727-748. DOI:10.1152/physrev. 00030.2014.

[3] Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies[J]. Lancet, 2011,377(9771):1085-1095. DOI:10.1016/S0140-6736(11)60105-0.

[4] Andreotti F, Crea F, Hennekens CH. Mechanisms, pathophysiology, and management of obesity[J]. N Engl J Med, 2017,376(15):1490-1491. DOI:10.1056/NEJMc1701944.

[5] Puzziferri N, Roshek TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review[J]. JAMA, 2014,312(9):934-942. DOI:10.1001/jama.2014. 10706.

[6] Evers SS, Sandoval DA, Seeley RJ. The physiology and molecular underpinnings of the effects of bariatric surgery on obesity and diabetes[J]. Annu Rev Physiol, 2017,79:313-334.DOI:10.1146/annurev-physiol-022516- 034423.

[7] Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018,361:k2179. DOI: 10.1136/bmj.k2179.

[8] Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine[J]. Science, 2005,307(5717):1915-1920. DOI: 10.1126/science.1104816.

[9] Santacruz A, Marcos A, Wärnberg J, et al. Interplay between weight loss and gut microbiota composition in overweight adolescents[J]. Obesity (Silver Spring), 2009,17(10):1906-1915. DOI: 10.1038/oby.2009.112.

[10] Paganelli FL, Luyer M, Hazelbag CM, et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type[J]. Sci Rep, 2019,9(1):10979. DOI: 10.1038/s41598-019- 47332-z.

[11] Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010,59(12):3049- 3057. DOI: 10.2337/db10-0253.

[12] Sánchez-Alcoholado L, Gutiérrez-Repiso C, Gómez-Pérez AM, et al. Gut microbiota adaptation after weight loss by Roux-en-Y gastric bypass or sleeve gastrectomy bariatric surgeries[J]. Surg Obes Relat Dis, 2019,15(11):1888-1895. DOI: 10.1016/j.soard.2019.08.551.

[13] Mabey JG, Chaston JM, Castro DG, et al. Gut microbiota differs a decade after bariatric surgery relative to a nonsurgical comparison group[J]. Surg Obes Relat Dis, 2020,16(9):1304-1311. DOI:10.1016/j.soard.2020.04.006.

[14] Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission[J]. Obes Surg, 2017,27(4):917-925. DOI: 10. 1007/s11695-016-2399-2.

[15] Farin W, Oñate FP, Plassais J, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis[J]. Surg Obes Relat Dis, 2020,16(7):852-862. DOI: 10.1016/j.soard.2020.03.014.

[16] Ikeda T, Aida M, Yoshida Y, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy[J]. Br J Surg, 2020,107(12):1673-1685. DOI: 10.1002/bjs.11654.

[17] Palmisano S, Campisciano G, Silvestri M, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode[J]. J Gastrointest Surg, 2020,24(8):1736-1746. DOI: 10.1007/s11605-019-04321-x.

[18] Karami R, Kermansaravi M, Pishgahroudsari M, et al. Changes in gut microbial flora after Roux-en-Y gastric bypass and sleeve gastrectomy and their effects on post-operative weight loss[J]. Updates Surg, 2021,73(4):1493-1499. DOI: 10.1007/s13304-020-00900-9.

[19] Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation[J]. Cell Metab, 2015,22(2):228-238. DOI: 10.1016/j.cmet.2015.07.009.

[20] Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019,76(3):473-493. DOI: 10.1007/s00018-018-2943-4.

[21] Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host Microbe, 2018,23(4):458-469.e5. DOI: 10.1016/j.chom.2018.03.011.

[22] Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016,7(3):189-200. DOI: 10.1080/19490976.2015.1134082.

[23] Haange SB, Jehmlich N, Krügel U, et al. Gastric bypass surgery in a rat model alters the community structure and functional composition of the intestinal microbiota independently of weight loss[J]. Microbiome, 2020,8(1):13. DOI: 10.1186/s40168-020-0788-1.

[24] Arora T, Seyfried F, Docherty NG, et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass[J]. ISME J, 2017,11(9):2035-2046. DOI: 10.1038/ismej.2017.70.

[25] Wu J, Zhang PB, Ren ZQ, et al. Changes of serum lipopolysaccharide, inflammatory factors, and cecal microbiota in obese rats with type 2 diabetes induced by Roux-en-Y gastric bypass[J]. Nutrition, 2019,67-68:110565. DOI: 10.1016/j.nut.2019.110565.

[26] De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome[J]. Gut, 2016,65(11):1812-1821. DOI: 10.1136/gutjnl-2015-309957.

[27] Al-Najim W, Docherty NG, le Roux CW. Food intake and eating behavior after bariatric surgery[J]. Physiol Rev, 2018,98(3):1113-1141. DOI:10.1152/physrev.00021. 2017.

[28] Jahansouz C, Staley C, Bernlohr DA, et al. Sleeve gastrectomy drives persistent shifts in the gut microbiome[J]. Surg Obes Relat Dis, 2017,13(6):916-924. DOI: 10.1016/j.soard.2017.01.003.

[29] Noel OF, Still CD, Argyropoulos G, et al. Bile acids, fxr, and metabolic effects of bariatric surgery[J]. J Obes, 2016,2016:4390254. DOI: 10.1155/2016/4390254.

[30] Zheng X, Huang F, Zhao A, et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice[J]. BMC Biol, 2017,15(1):120. DOI: 10.1186/s12915-017-0462-7.

[31] Cavin JB, Couvelard A, Lebtahi R, et al. Differences in alimentary glucose absorption and intestinal disposal of blood glucose after roux-en-y gastric bypass vs sleeve gastrectomy[J]. Gastroenterology, 2016,150(2):454-464.e9. DOI: 10.1053/j.gastro.2015.10.009.

[32] Wang L, Li P, Tang Z, et al. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment[J]. Sci Rep, 2016,6:33251. DOI: 10.1038/srep33251.

[33] Lach G, Schellekens H, Dinan TG, et al. Anxiety, depression, and the microbiome: a role for gut peptides[J]. Neurotherapeutics, 2018,15(1):36-59. DOI: 10.1007/s13311-017-0585-0.

[34] Min T, Prior SL, Dunseath G, et al. Temporal effects of bariatric surgery on adipokines, inflammation and oxidative stress in subjects with impaired glucose homeostasis at 4 years of follow-up[J]. Obes Surg, 2020,30(5):1712-1718. DOI: 10.1007/s11695-019-04377-3.

[35] Poitou C, Perret C, Mathieu F, et al. Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: a rna-seq study[J]. PLoS One, 2015,10(5):e0125718. DOI: 10.1371/journal.pone.0125718.

[36] Liou AP, Paziuk M, Luevano JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity[J]. Sci Transl Med, 2013,5(178):178ra41. DOI: 10.1126/scitranslmed.3005687.

[37] Jahansouz C, Staley C, Kizy S, et al. Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy[J]. Ann Surg, 2019,269(6):1092-1100. DOI: 10.1097/SLA.0000000000002729.

[38] Péan N, Le Lay A, Brial F, et al. Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto-Kakizaki rats improves glucose homeostasis through enhanced FXR signalling[J]. Diabetologia, 2020,63(6):1223-1235. DOI: 10.1007/s00125-020-05122-7.

[39] Fouladi F, Brooks AE, Fodor AA, et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery[J]. Obes Surg, 2019,29(4):1259- 1267. DOI: 10.1007/s11695-018-03653-y.

[40] Chaudhari SN, Luo JN, Harris DA, et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery[J]. Cell Host Microbe, 2021,29(3):408-424.e7. DOI: 10.1016/j.chom.2020.12.004.

[41] Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016,165(6):1332- 1345. DOI: 10.1016/j.cell.2016.05.041.

[42] Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019,16(8):461-478. DOI: 10.1038/s41575-019-0157-3.

[43] Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity[J]. Nutrients, 2020,12(3)DOI: 10.3390/nu12030802.

[44] Hanvold SE, Vinknes KJ, Bastani NE, et al. Plasma amino acids, adiposity, and weight change after gastric bypass surgery: are amino acids associated with weight regain?[J]. Eur J Nutr, 2018,57(7):2629-2637. DOI:10.1007/s00394-017-1533-9.

[45] Bozadjieva Kramer N, Evers SS, Shin JH, et al. The Role of elevated branched-chain amino acids in the effects of vertical sleeve gastrectomy to reduce weight and improve glucose regulation[J]. Cell Rep, 2020,33(2):108239. DOI: 10.1016/j.celrep.2020.108239.

[46] Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus[J]. Surgery, 2012,151(4):587-593. DOI: 10.1016/j.surg.2011.09.038.

[47] Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy[J]. Nature,2014,509(7499):183-188. DOI:10.1038/nature13135.

[48] Chaudhari SN, Harris DA, Aliakbarian H, et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects[J]. Nat Chem Biol, 2021,17(1):20-29. DOI:10.1038/s41589-020-0604-z.

[49] Lauti M, Kularatna M, Hill AG, et al. Weight regain following sleeve gastrectomy-a systematic review[J]. Obes Surg,2016,26(6):1326-1334. DOI:10.1007/s11695- 016-2152-x.

[50] Faria SL, Santos A, Magro DO, et al. Gut microbiota modifications and weight regain in morbidly obese women after Roux-en-Y gastric bypass[J]. Obes Surg, 2020,30(12):4958-4966. DOI: 10.1007/s11695-020-04956-9.

[51] Stefura T, Zapała B, Stój A, et al. Does postoperative oral and intestinal microbiota correlate with the weight-loss following bariatric surgery?-a cohort study[J]. J Clin Med, 2020,9(12)DOI: 10.3390/jcm9123863.

[52] Al Assal K, Prifti E, Belda E, et al. Gut microbiota profile of obese diabetic women submitted to Roux-en-Y gastric bypass and its association with food intake and postoperative diabetes remission[J]. Nutrients, 2020,12(2)DOI: 10.3390/nu12020278.

[53] Sabate JM, Coupaye M, Ledoux S, et al. Consequences of small intestinal bacterial overgrowth in obese patients before and after bariatric surgery[J]. Obes Surg, 2017,27(3):599-605. DOI: 10.1007/s11695-016-2343-5.

[54] Coelho LK, Carvalho NS, Navarro-Rodriguez T, et al. Lactulose breath testing can be a positive predictor before weight gain in participants with obesity submitted to Roux-en-Y gastric bypass[J]. Obes Surg, 2019,29(11):3457-3464. DOI: 10.1007/s11695-019-04006-z.

[55] Dolan RD, Baker J, Harer K, et al. Small intestinal bacterial overgrowth: clinical presentation in patients with Roux-en-Y gastric bypass[J]. Obes Surg, 2021,31(2):564-569. DOI: 10.1007/s11695-020-05032-y.

[56] Mouillot T, Rhyman N, Gauthier C, et al. Study of small intestinal bacterial overgrowth in a cohort of patients with abdominal symptoms who underwent bariatric surgery[J]. Obes Surg, 2020,30(6):2331-2337. DOI:10. 1007/s11695-020-04477-5.

[57] Ciobârcă D, Cătoi AF, Copăescu C, et al. Bariatric surgery in obesity: effects on gut microbiota and micronutrient status[J]. Nutrients, 2020,12(1).DOI:10. 3390/nu12010235.

[58] Andalib I, Shah H, Bal BS, et al. Breath hydrogen as a biomarker for glucose malabsorption after Roux-en-Y gastric bypass surgery[J]. Dis Markers, 2015,2015:102760. DOI: 10.1155/2015/102760.

[59] Machado JD, Campos CS, Lopes Dah Silva C, et al. Intestinal bacterial overgrowth after Roux-en-Y gastric bypass[J]. Obes Surg, 2008,18(1):139-143. DOI: 10.1007/s11695-007-9365-y.

[60] Lakhani SV, Shah HN, Alexander K, et al. Small intestinal bacterial overgrowth and thiamine deficiency after Roux-en-Y gastric bypass surgery in obese patients[J]. Nutr Res, 2008,28(5):293-298. DOI:10.1016/j.nutres. 2008.03.002.

[61] Woodard GA, Encarnacion B, Downey JR, et al. Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial[J]. J Gastrointest Surg, 2009,13(7):1198-1204. DOI:10.1007/s11605-009- 0891-x.

[62] Wagner N, Ramos M, de Oliveira Carlos L, et al. Effects of probiotics supplementation on gastrointestinal symptoms and sibo after roux-en-y gastric bypass: a prospective, randomized, double-blind, placebo- controlled trial[J]. Obes Surg, 2021,31(1):143-150. DOI: 10.1007/s11695-020-04900-x.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多