分享

首次获得!我国科研团队重大突破→

 baoyisheng143 2022-09-16 发布于新疆

9月14日夜,国际顶级学术期刊《自然》发表了我国科学家在下一代光电芯片制造领域的重大突破。南京大学张勇、肖敏、祝世宁领衔的科研团队,发明了一种新型“非互易飞秒激光极化铁电畴”技术,将飞秒脉冲激光聚焦于材料“铌酸锂”的晶体内部,通过控制激光移动的方向,在晶体内部形成有效电场,实现三维结构的直写和擦除。这一新技术,突破了传统飞秒激光的光衍射极限,把光雕刻铌酸锂三维结构的尺寸,从传统的1微米量级(相当于头发丝的五十分之一),首次缩小到纳米级,达到30纳米,大大提高了加工精度。

这一重大发明,未来或可开辟光电芯片制造新赛道,有望用于光电调制器、声学滤波器、非易失铁电存储器等关键光电器件芯片制备,在5G/6G通讯、光计算、人工智能等领域有广泛的应用前景。

铌酸锂得益于其优越的透射谱范围、非线性光学系数、电光和压电性能,是下一代5G/6G通讯和光子芯片的重要载体。特别的是,在铌酸锂晶体中制备铁电畴结构,在非线性光学、声学滤波器、非易失铁电存储等领域有广泛的应用前景。

此次,南京大学的研究团队发展了一种新型非互易激光极化铁电畴技术,将飞秒脉冲激光聚焦于铌酸锂晶体内部进行直写,得到了纳米线宽的三维铁电畴结构。在直写过程中,铌酸锂晶体在高强度激光作用下发生多光子吸收,导致局部晶体温度升高,既使得铌酸锂晶体的局域矫顽场降低,又在晶体内部形成了一个有效电场。在二者共同作用下,晶体内部形成一个有效区域,可以实现铁电畴极化反转。同时,有效电场方向的分布特性决定了激光直写铁电畴具有非互易特性,即沿不同方向直写可以实现不同线宽的铁电畴极化以及反极化。研究人员利用这一特性设计了不同的加工工艺,在三维空间上均实现了突破衍射极限的铁电畴线宽控制,实验中成功制备出线宽为100 nm ~ 400 nm的条形铁电畴和尖端宽度为30 nm的楔形铁电畴。同时,还演示了铁电畴结构从一维向二维和三维的结构转换,并实现了高效非线性光束整形。此外,该加工方法得到的铁电畴具有良好的稳定性,经过两年的时效处理或者300℃高温处理后依然稳定存在。

这一工作将飞秒激光极化技术与铌酸锂铁电畴工程有机结合,突破了传统技术的壁垒,首次在三维空间实现了纳米铁电畴可控制备。将其应用于量子光学领域,可实现高效、高维和窄线宽量子纠缠产生;在电子学领域,可以推动高性能铁电畴壁纳米电子器件的发展,譬如大容量可重写非易失性存储器;在声学领域,纳米周期的铁电畴结构可以实现超高频声学谐振器和滤波器。飞秒激光极化技术可以进一步应用于其他铁电晶体,包括钽酸锂和磷酸钛钾晶体等,并促进高性能三维光、声、电集成器件的发展。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多