分享

定向能技术对助推段导弹防御的影响

 道2和 2022-12-06 发布于河北
知远战略与防务研究所 沐俭/编译
自:美国战略与国际问题研究中心(CSIS)网站2022年6月

【知远导读】2022年6月,CSIS发布了题为《助推阶段导弹防御:相关假设再评估》的报告(Boost-Phase Missile Defense)。本篇推送节选自该报告的附录——定向能技术对助推段导弹防御的影响。
早在上世纪60年代美国就提出了助推阶段导弹防御的设想,并在之后的各个时期对这一设想进行了分析、研究和开发试验,但最终都以放弃而告终。放弃的原因很多,包括技术、成本、资金、战略和政治等。本文作者认为,随着现在各项科学技术的进步,过去的一些假设都已不再适用,有必要对过去提出的助推阶段导弹拦截假设条件进行重新审查评估。本文主要针对朝鲜和伊朗的弹道导弹防御,从地面、空中和空间等三个领域进行了助推阶段防御的可行性研究。

报告全文约47000字,希望阅读全文的读者请登录知远数据库查找。

Image

美国导弹防御体系长期以来一直将定向能技术作为一种击败弹道导弹的手段。与动能拦截弹不同的是,定向能波束几乎可以瞬间击中目标,具备更大的弹匣深度,并能降低防御先进导弹的相对成本。虽然定向能方法可以简化助推段导弹防御的要求,但它们带来了新的科学、系统工程和操作挑战。尽管激光放大技术取得了令人印象深刻的进步,但在近期,定向能技术在助推段导弹防御方面的适用性仍然不确定。
实现助推段导弹防御的定向能拦截需要接近或超过兆瓦级的激光。除了高功率外,这种系统还需要产生具有最小散度和高指向精度的光束1

定向能防御还需要有利于远距离光学传输的大气条件。大气湍流、雾霾和其它条件的变化对激光能量的传输有重大影响。这种对有利条件的次要要求传统上限制了定向能方法用于空中平台上的研究,而这些平台在更清晰的大气区域内运行,视野更广。这种限制反过来要求考虑飞机振动和激光器的尺寸、重量和功率(SWaP)的性能。

过去的方法:化学激光

化学激光器代表了在机载平台上实现兆瓦级输出的传统方法。从20世纪90年代初开始,美国空军和后来的导弹防御局资助了“机载激光器”(ABL)项目,该项目使用化学氧碘激光器(COIL)实现大约1兆瓦的光束功率2
在化学氧碘激光器中,过氧化氢和氯气在激发态下反应产生氧气,然后将其能量转移(“泵浦”)到碘放大(“增益”)介质中。泵浦过程刺激增益介质中的原子,使它们释放出具有类似波长的光子级联——激光束。与使用固体增益介质的激光器不同,化学氧碘激光器可以有效地消散余热,因为反应物可以迅速循环出激光腔3
尽管化学氧碘激光器具有良好的功率特性,但在实现可行性操作概念方面存在后勤障碍。用于化学氧碘激光器的化学反应物毒性特别大,需要复杂的子系统来运输和储存。现有化学品的供应有限,从而也限制了它们进行多次照射的能力。

所以,“机载激光器”需要一个大型平台——一架改装过的747客机——来支持它的子系统。这就带来了额外的集成挑战。在其典型的工作高度,“机载激光器”会受到更高的湍流和气动抖振影响,从而需要开发昂贵的自适应光学、指向和隔振解决方案。这些条件最终限制了 “机载激光器”的射程4。在2010年的一次试验中,“机载激光器”击毁了“几十千米”外的短程弹道导弹级别的目标——这对于可行的助推段导弹防御来说太近了5。由于担心这些复杂性和性能问题,美国最终在2012年终止了该项目6。在飞机振动和激光器的尺寸、重量和功率没有显著改进的情况下,化学方法不太可能用于具有成本效益的助推阶段导弹防御。

新的方法:电泵浦激光器

在 “机载激光器”计划被取消后,美国防空与导弹防御便一直在研发电力激光器。尽管它们的光束功率较低,但这些激光器不会使用阻碍了早期概念发展发展的挥发性化学燃料。与化学激光器相比,电力激光器还将降低成本、提高光束质量、效率和功重比7
这类激光器通常采用一个电力二极管来注入其增益介质8。这比以前使用耗电灯管进行泵送的方法有了很大的改进。随着在民用和军事领域的广泛应用,二极管泵浦代表了电力驱动的高能激光器的主要方法9
与 “机载激光器”不同的是,轻型电力激光器或可以在大气条件更有利的高空平台上操作10。新型电力激光器也可以在更有效的光波长下工作,或者提供脉冲效应来增加对目标的照射强度——可能是 “机载激光器”的两倍效率11

要实现这些优势,就需要在电激光束功率方面取得重大进展。二极管泵浦固态、组合光纤和碱金属蒸汽激光器已经证明了功率输出从几十千瓦到小几百千瓦的功率。要支持助推阶段导弹拦截任务,这些激光器必须要能产生高达数百千瓦或兆瓦的光束。

二极管泵浦固态激光器

有几种途径可用于放大二极管泵浦激光器。二极管泵浦固态(DPSS)激光器将二极管泵浦应用于传统的固态激光器设计中。在二极管泵浦固态激光器中,二极管泵送一块晶体增益介质,从而放大输出的激光束。随着二极管泵浦技术的成熟,二极管泵浦固态激光器的功率迅速增加,在2010年达到了高达100千瓦的峰值输出12。然而,100-300 千瓦的范围可能已经代表了快速可实现的性能上限13。在二极管泵浦固态激光器中,余热很难从厚厚的增益介质板中抽取,这对其操作造成了热瓶颈。
克服二极管泵浦固态激光器的热屏障的一种方法是使用多个更小的增益介质板。在这种被称为分布式增益激光器的设计中,激光束穿过一系列连续的平板,从而放大其功率。这些液冷板的横截面更薄,使它们能够更有效地释放热量,从而提高了系统的功率阈值14。由于这些有利的特性,国防部长办公室(OSD)已经确定了分布式增益激光器作为未来发展的候选方案15
然而,如果不引入新的冷却技术或新的增益介质,二极管泵浦平板激光器可能无法上升到助推阶段导弹防御所需要的功率16。提高导热性的陶瓷增益介质是进一步提高性能的一种途径17。热管理方面的创新——例如液体或低温冷却——可以获得额外的增益18
固态激光器为高功率激光提供了一种成熟的方法,而分布式增益设计和新的增益介质的使用可以让用户提取二极管泵浦的全部潜力。目前还不清楚分布式增益激光器是否可以提升到助推阶段导弹防御所需要的上兆瓦功率19。其它激光方法——使用玻璃纤维或碱性气体增益介质——可能具有更高的性能潜力,但它们的技术还不够成熟。

合成光纤激光器

合成光纤激光器可以为达到战略功率水平提供更大的净空间。二极管泵浦光纤激光器经常用于商业用途,它使用掺杂玻璃纤维作为增益介质,可提供比固态激光器高1.5-2倍的效率和更大的主动冷却表面积20。商业部门对光纤激光器的投资加快了技术发展的步伐。因此,单个光纤激光器的光束功率已经从2008年的3千瓦增长到2018年的15千瓦以上,并且存在进一步放大单模输出的多种途径21
开发人员通过将多个激光单元合成一个强大的单一光束来放大光纤激光器的功率22。光束合成的技术挑战是生产高能光纤激光武器的最大瓶颈。最有效的方法被称为“相干合成”,将同一相位的多个光束连接起来,以产生更强大的光束。然而,由于激光的波长较短,很难精确地匹配它们的相位,相干合成激光器仍然难以调节23

一种更简单的方法是将激光非相干合成,要么平行地照射不同的光束,要么将不同波长的光束连在一起而不匹配相位。第二种方法称为光谱组合,在减少破坏性干扰方面比简单的非相干合成更有效。虽然早期的激光武器原型使用简单的非相干合成,但最近的项目则将光谱组合作为首选方法24。光谱合成光纤激光器验证表明可产生高达100千瓦的光束功率,超过了最近用相干合成方法实现的30千瓦25。光谱组合方法代表了在近期内实现~500千瓦光纤激光器的最有可能的途径,而相干合成将带来更高的性能上限26

二极管泵浦碱金属蒸汽激光器

2003年发明的二极管泵浦碱金属蒸汽激光器(DPAL)提供了第三种可提升到战略功率水平的激光武器。二极管泵浦碱金属蒸汽激光器具有相当大的放大潜力,是美国导弹防御局(MDA)激光成熟计划的主要研究重点27。该激光器利用碱金属蒸汽循环回路作为增益介质,将化学氧碘激光器的散热优势与固态系统的效率和弹匣深度结合在一起28。这种激光器卓越的光束质量和量子效率将把这些优势结合在一起,并能降低功耗和发热29。这些特性的结合使其性能理论极限超过了单兆瓦范围,提供了相当大的增长空间。

Image

尽管二极管泵浦碱金属蒸汽激光器在理论上具有潜力,但它在未来的激光放大方面存在着许多未知因素。一个核心挑战是碱金属蒸汽增益介质的窄能量吸收带。为了使二极管的泵浦波长与碱的吸收波长相匹配,研究人员尝试混合缓冲气体,加压激光室,或过滤泵浦二极管,从而产生了下游的热、效率和复杂性问题30
尽管如此,该激光器仍然是国防部长办公室和导弹防御局的研究重点。从2010年到2020年,导弹防御局和劳伦斯利弗莫尔国家实验室进行了二极管泵浦碱金属蒸汽激光器光束放大工作,在2013年实现了3.91千瓦功率水平,2014年实现了10千瓦, 2015年实现了16 千瓦,最近实现了30千瓦功率31

2020年,国防部长办公室发布了一项信息征求书以征求二极管泵浦碱金属蒸汽激光器技术,目标是到2024财年将功率水平放大到300千瓦32

自由电子和脉冲激光器

另一些激光技术虽然不太成熟,但也可能提供可供开发的独特特性。自由电子激光器(FEL)通过将电子加速导入摆磁场来产生激光束;这样的系统可以放大到兆瓦级,并能主动调整其波长以适应不同的大气特征。然而,今天的自由电子激光器设计比二极管泵浦激光器重得多,而且体积大,从而使它们只能在舰船上使用33。此外,自由电子激光器系统仍然处于较低的技术准备水平。考虑到这些限制,随着二极管泵浦激光器的成熟,自由电子激光器在很大程度上已经失宠。

Image

超短脉冲激光器可以提供另一种途径来对助推段导弹产生致命的影响。与传统的连续波激光器不同,超短脉冲激光器会产生连续的纳秒到飞秒的高能量爆发34。当峰值强度高达1太瓦时,电力脉冲激光会在周围空气中造成“非线性效应”,从而在不受大气湍流影响的情况下传播35。这可以减少对昂贵的自适应光学和传感器的需求,以抵消大气限制条件。
与连续波相比,脉冲激光也会提供不同的杀伤力机制。它们的峰值强度使它们能够侵蚀(而不是熔化)目标表面,每次脉冲都会使少量物质蒸发。此外,脉冲激光会在其光束周围产生导电等离子体柱,可以传输电子干扰。美国陆军研究人员在2012年首次证明了这一现象,将电弧传导到远处的车辆上。最后,高能激光脉冲可以被分解成炫目的闪光,使敌方传感器眼花缭乱36

这种多任务能力已经引起了美国导弹防御局和陆军的兴趣。2021年2月,导弹防御局发布了一份关于超短脉冲激光武器的信息征求书37。虽然这种激光器仍处于研发的早期阶段,但它们为简化未来激光武器系统提供了有前途的特性。

近期进展

美国导弹防御局、国防部长办公室和各军种为成熟激光技术和平台进行了多次努力。近年来,负责研究和工程的国防部副部长办公室(OUSDR&E))承担了执行国防范围内激光放大科学和技术(S&T)开发的责任。虽然导弹防御局之前有一个单独的战略激光成熟项目,但它没有提出2022财年激光科技资金请求。导弹防御局此前在2020财年获得1.09亿美元用于激光科技,在2021财年没有申请拨款后,又拨款4200万美元用于继续开发二极管泵浦碱金属蒸汽激光器。
根据其高能激光放大计划(HELSI), 国防部长办公室计划在本世纪20年代中期成熟几个300和500千瓦的激光系统38。在2021财年,国会为负责研究和工程的国防部副部长办公室拨款1.13亿美元,用于验证和转换300千瓦的高能激光器。2022财年,国防部长办公室已申请1.07亿美元用于继续其激光放大工作,4600万美元用于二极管泵浦源、光束控制、激光传播和效应的应用研究,以及1500万美元用于从早期的空军项目中转移过来基础研究39
根据这些计划,国防部长办公室的目标是在2022财年验证300千瓦的固态激光器,在2024财年验证500千瓦的电力激光器40

与这些努力同时进行的是在军种级别进行的操作高能激光技术的计划。2008年至2014年期间,美国海军演示了一种峰值功率为33千瓦的非相干合成光纤激光器,2017年,美国陆军接收了一种60千瓦级激光试验台41。到2018年,美国陆军已经开始开发多个激光器原型,包括100千瓦级光谱合成激光器,空军在2021年初接收了一台吊舱激光系统42。未来几年,联合军种部队计划部署几种50 - 300千瓦范围内的光纤或固态系统,用于对抗小型舰艇、火炮、迫击炮弹、飞机、炮弹和战场无人机43

美国国防部激光放大研发回顾

Image

自“机载激光器”计划取消以来,电力激光器技术迅速发展,特别是在光纤激光器和其它具有商业应用的系统方面。虽然板条和光谱合成光纤激光方法似乎最接近具备战术效用,但实现兆瓦级功率所需要的方法还没有得到验证。
可用于与助推阶段导弹防御相关的激光技术(先进指向技术、小尺寸低重量子系统、相干光束组合、二极管泵浦碱金属蒸气激光器和脉冲激光系统)很少有商业应用,需要政府持续投资才能成熟。尽管导弹防御局只有周期性研发资金并分散了定向能项目资金,但国会领导层仍然对战略激光放大技术感兴趣44。增强战术定向能激光的技术途径是明确的。项目管理的一致性、实用性评估的步伐和立法支持的深度将决定它们是否可以上升到战略应用的程度。

1Office of the Under Secretary of Defense for Research and Engineering, OSD Laser Scaling Plan Alexandria, VA: Department of Defense, April 15, 2019, https:///opportunity/federal-contract-opportunity/ osd-laser-scaling-plan-hq003419rfi0001#related-government-files-table.

2MIT Lincoln Laboratory, Technology in Support of National Security Lexington, MA: 2011; and Michael Zoltoski, “The Weapons Technologies Community of Interest CoI,” Armament Systems Forum, Fredericksburg, VA, April 27, 2016, https://ndiastorage.blob.core./ndia/2016/science/MikeZoltoski.pdf.

3Clifford V. Sulham, “Laser Demonstration and Performance Characterization of Optically Pumped Alkali Laser Systems,” PhD diss., Air Force Institute of Technology, 2010, https://apps./dtic/tr/fulltext/u2/a528353. pdf.

4James D. Syring, “Ballistic Missile Defense System Update,” speech, CSIS, Washington, DC, January 20, 2016, https://www./events/ballistic-missile-defense-system-update-1.

5“U.S. successfully tests airborne laser on missile,” Reuters, February 12, 2020, https://www./ article/usa-arms-laser/u-s-successfully-tests-airborne-laser-on-missile-idUSN1111660620100212?type=mar ketsNews; and “Airborne Laser Test Bed Successful in Lethal Intercept Experiment,” Missile Defense Agency, press release, February 11, 2010, https://www./news/10news0002.html.

6Robert Gates, “DoD News Briefing with Secretary Gates from The Pentagon,” speech, Washington, DC, April 6, 2009, https://archive./Transcripts/Transcript.aspx?TranscriptID=4396.

7Sydney Freedberg Jr., “Killing cruise missiles: Pentagon to test rival lasers,” Breaking Defense, December 2, 2019, https:///2019/12/exclusive-three-ways-to-kill-cruise-missiles-pentagon-to-test-rival-lasers/; and Megan Eckstein, “Navy, MDA Experimenting with Laser Prototypes For Surface Warfare, Ballistic Missile Defense,” USNI News, March 29, 2017, https://news./2017/03/29/navy-mda-experimenting-laser-prototypes-surface-warfare-ballistic-missile-defense.

8Paul Leisher and Bob Deri, “Advancements in High Efficiency Semiconductor Lasers for High Power Applications,” LLNL-PRES-741702, UCSB IEE Seminar, Santa Barbara, CA, November 16, 2017, https://iee. ucsb.edu/sites/default/files/docs/2017_ucsb_-_leisher_-_high_efficiency_diode_lasers_-_llnl-pres-.pdf; “Laser Design Considerations for Directed Energy Weapons,” Leonardo USA, December 19, 2019, https://www. leonardo.us/blog/laser-design-considerations-for-directed-energy-weapons; and Jeffrey Hecht, “Fiber Lasers Mean Ray Guns Are Coming,” IEEE Spectrum, March 27, 2018, https://spectrum./aerospace/military/ fiber-lasers-mean-ray-guns-are-coming.

9David H. Kiel, “Is this the time for a high-energy laser weapon program?,” Optical Engineering 52, no. 2 October 2012, 021008, doi:10.1117/1.OE.52.2.021008.

10K. Takehisa, “New defence system using a chemical oxygen-iodine laser in a high-altitude airship,” Proceedings of SPIE 10798, High-Power Lasers: Technology and Systems, Platforms, and Effects II, 1079803, October 9, 2018, doi:10.1117/12.2318141.

11Missile Defense Agency, Boost-phase Missile Defense Options: Report to Congress Washington, DC: U.S. Department of Defense, January 2014.

12Robert L. Byer, “Lasers at 50: Meeting the Grand Challenges for the 21st Century,” APS Conference, Portland, OR, March 15, 2010, http://apps3./aps/meetings/march10/presentations/b5-1-byer.pdf; Leisher and Deri, “Advancements in High Efficiency Semiconductor Lasers for High Power Applications”; Jason B. Cutshaw, “Army’s solid-state Laser testbed undergoes trials,” U.S. Army Space and Missile Defense Center, January 30, 2014, https://www./article/119153/armys_solid_state_laser_testbed_undergoes_trials; “Solid State Laser Testbed SSLT,” U.S. Army Space and Missile Defense Center, https://www.smdc./ Portals/38/Documents/Publications/Fact_Sheets/SSLT.pdf; and John Cummings, “100kW Solid-State Laser to be Transferred to HELSTF for Field Tests,” U.S. Army Space and Missile Defense Center, February 19, 2010, https://www./article/34737/100kw_solid_state_laser_to_be_transferred_to_helstf_for_field_tests.

13Ronald O’Rourke, Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress, CRS Report No. R41526 Washington, DC: Congressional Research Service, June 2015, https:///sgp/ crs/weapons/R41526.pdf.

14Sydney J. Freedberg Jr., “General Atomics’ New Compact, High-Powered Lasers,” Breaking Defense, December 9, 2020, https:///2020/12/general-atomics-new-compact-high-powered-lasers/.

15“Defense Department Invests Additional $47 Million in High Energy Laser Scaling Initiative,” Office of the Undersecretary of Defense for Research and Engineering, April 28, 2020, https://www./wp-content/ uploads/2020/04/2020_Laser_Award_Announcement.pdf.

16Sulham, “Laser Demonstration and Performance Characterization of Optically Pumped Alkali Laser Systems.”

17Mark Dubinskiy et al., “Lasers for DEW based on fully crystalline fibers,” Army Science and Technology Symposium and Showcase, Washington, DC, August 22, 2018, https://ndiastorage.blob.govcloudapi. net/ndia/2018/armyst/Dubinskiy.pdf.

18Jeff Hecht, “Liquid Lasers Challenge Fiber Lasers as the Basis of Future High-Energy Weapons,” IEEE Spectrum, October 21, 2020, https://spectrum./tech-talk/aerospace/military/fiber-lasers-face-a-challenger-in-laser-weapons; and Office of the Undersecretary of Defense Comptroller, Department of Defense Fiscal Year FY2013 President’s Budget Submission: Missile Defense Agency Justification Book Volume 2a: Research, Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, February 2012, https://comptroller./Portals/45/Documents/defbudget/fy2013/budget_justification/pdfs/03_RDT_ and_E/Missile_Defense_Agency_PB_2013_1.pdf.

19Thomas J. Karr, “The OSD HEL Laser Scaling Initiative,” DEPS Annual Science and Technology Symposium, West Point, NY, March 10, 2020.

20“Laser Technology,” Northrop Grumman, n.d., https://www./space/laser-technology/; and Phillip Sprangle et al., High-Power Fiber Lasers for Directed-Energy Applications Washington, DC: Naval Research Laboratory, 2008.

21Dubinskiy et al., “Lasers for DEW based on fully crystalline fibers.”; Sprangle et al., Incoherent Combining of High-Power Fiber Lasers for Directed-Energy Applications; and Hecht, “Fiber Lasers Mean Ray Guns Are Coming.”

22Karr, “The OSD HEL Laser Scaling Initiative.”

23Hossein Fathi, Mikko Närhi, and Regina Gumenyuk, “Towards Ultimate High-Power Scaling: Coherent Beam Combining of Fiber Lasers,” Photonics 8, no. 12 2021, 566, doi:10.3390/photonics8120566.

24Steve Trimble, “General Atomics, Boeing Team Up For High Energy Lasers,” Aviation Week, October 14, 2020, https:///shows-events/ausa-2020/general-atomics-boeing-team-high-energy-lasers.

25Office of the Under Secretary of Defense for Research and Engineering, OSD Laser Scaling Plan.

26Karr, “The OSD HEL Laser Scaling Initiative.”

27“Diode-Pumped Alkali Laser: A New Combination,” Lawrence Livermore National Laboratory, n.d., https:// lasers.llnl.gov/science/photon-science/directed-energy/dpal; William F. Krupke et al., “New Class of CW High-Power Diode-Pumped Alkali Lasers DPALs,” High-power Laser Ablation Conference, Taos, NM, April 25–30, 2004, https://www./servlets/purl/15013954; and Sulham, “Laser Demonstration and Performance Characterization of Optically Pumped Alkali Laser Systems.”

28He Cai et al., “Reviews of a Diode-Pumped Alkali Laser DPAL: a potential high powered light source,” Proceedings of SPIE 9521, Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part I, 95211U, March 4, 2015, doi:10.1117/12.2183410.

29Tobias Koenning et al., Narrow line diode laser stacks for DPAL pumping Tucson, AZ: DILAS Diode Laser, May 2014, https://www./sites/default/files/content/white-paper/pdfs/DILAS_Paper%208962- 14.pdf; and Jeff Hecht, “Photonic frontiers: Alkali-Vapor Lasers: Diode pumping enables a new approach to alkali-vapor lasers,” Laser Focus World, April 1, 2011, https://www./lasers-sources/ article/16562871/photonic-frontiers-alkalivapor-lasers-diode-pumping-enables-a-new-approach-to-alkalivapor-lasers.

30Hecht, “Photonic frontiers.”

31Office of the Under Secretary of Defense for Research and Engineering, OSD Laser Scaling Plan; Office of the Under Secretary of Defense Comptroller, Department of Defense Fiscal Year FY2015 Budget Estimates: Missile Defense Agency Defense Wide Justification Book Volume 2a of 5: Research, Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, March 2014, https:// comptroller./Portals/45/Documents/defbudget/fy2015/budget_justification/pdfs/03_RDT_ and_E/2_RDTE_MasterJustificationBook_Missile_Defense_Agency_PB_2015_Vol_2.pdf; Office of the Undersecretary of Defense Comptroller, Department of Defense Fiscal Year FY2016 President’s Budget Submission: Missile Defense Agency Defense Wide Justification Book Volume 2a of 2: Research, Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, February 2015, https:// comptroller./Portals/45/Documents/defbudget/fy2016/budget_justification/pdfs/03_RDT_ and_E/MDA_RDTE_MasterJustificationBook_Missile_Defense_Agency_PB_2016_1.pdf; Office of the Undersecretary of Defense Comptroller, Department of Defense Fiscal Year FY2017 President’s Budget Submission: Missile Defense Agency Defense Wide Justification Book Volume 2a of 2: Research, Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, February 2016, https:// comptroller./Portals/45/Documents/defbudget/FY2017/budget_justification/pdfs/03_RDT_and_E/ MDA_RDTE_MasterJustificationBook_Missile_Defense_Agency_PB_2017_1.pdf; and Jaganath Sankaran,

“Chronology of MDA’s Plans for Laser Boost-Phase Defense,” Mostlymissiledefense, August 26, 2016, https:///2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/.

32Office of the Undersecretary of Defense for Research and Engineering, Approaches for Technology Transfer of Diode Pumped Alkali Laser DPALTechnology to Industry Washington, DC: U.S. Department of Defense, May 2020, https:///opportunity/federal-contract-opportunity/approaches-for-technology-transfer-of-diode-pumped-alkali-laser-dpal-technology-to-industry-ousdrandededpalrfi2020.

33O’Rourke, Navy Shipboard Lasers for Surface, Air, and Missile Defense, 12, 48.

34U.S. Navy, “Scalable Compact Ultra-short Pulse Laser Systems SCUPLS,” SBIR-STTR, U.S. Small Business Administration, 2018, https://www./sbirsearch/detail/1508927.

35U.S. Army, “Tactical Ultrashort Pulsed Laser for Army Platforms,” SBIR-STTR, U.S. Small Business Administration, 2020, https://www./node/1654485; and Chase A. Munson and Anthony R. Valenzuela, The Impact of Aerosols and Battlefield Obscurants on Ultrashort Laser Pulse Propagation, ADA556794 Aberdeen, MD: Army Research Laboratory, 2011, https://apps./sti/citations/ADA556794.

36Jason Kaneshiro, “Picatinny engineers set phasers to 'fry’,” U.S. Army, June 22, 2012, https://www./ article/82262/; and “Ultrashort Pulse Laser Systems,” AQWest, 2016, https://www./solutions/ lasers-and-electrooptics/ultrashort-pulse-laser-systems.

37U.S. Missile Defense Agency, “Missile Defense Agency Request for Information for Pulsed Laser,” MDA21DVRFl011, SAM.gov, U.S. General Services Administration, February 11, 2021, https:/// opportunity/federal-contract-opportunity/missile-defense-agency-request-for-information-for-pulsed-laser-mda21dvrfi011.

38Karr, “The OSD HEL Laser Scaling Initiative”; Missile Defense Agency, Laser Scaling Request for Information RFI& Industry Day Announcement, 19-MDA-9991 Albuquerque, NM: Missile Defense Agency, March 2019, https:///opportunity/federal-contract-opportunity/laser-scaling-rfi-industry-day-announcement-hq027719rfi0001; and Office of the Under Secretary of Defense for Research and Engineering, OSD Laser Scaling Plan.

39Office of the Undersecretary of Defense Comptroller, Department of Defense Fiscal Year FY2022 Budget Estimates: Office of the Secretary of Defense Defense-Wide Justification Book Volume 3 of 5: Research, Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, May 2021, https://comptroller. /Portals/45/Documents/defbudget/fy2022/budget_justification/pdfs/03_RDT_and_E/RDTE_Vol3_ OSD_RDTE_PB22_Justification_Book.pdf.

40Freedberg Jr., “Killing Cruise Missiles: Pentagon To Test Rival Lasers.”

41Dubinskiy et al., “Lasers for DEW based on fully crystalline fibers; O’Rourke, Navy Shipboard Lasers for Surface, Air, and Missile Defense; “USS Ponce Decommissioned after 46 Years of Service,” U.S. Navy, October 14, 2017, https://www./submit/display.asp?story_id=102868; David Smalley, “Historic Leap: Navy Shipboard Laser Operates in Persian Gulf,” Office of Naval Research, December 10, 2014, https://www.onr./en/ Media-Center/Press-Releases/2014/LaWS-shipboard-laser-uss-ponce; and Jen Judson, “US Army gets world record-setting 60-kW laser,” Defense News, March 16, 2017, https://www./digital-show-dailies/global-force-symposium/2017/03/16/us-army-gets-world-record-setting-60-kw-laser/.

42Kip R. Kendrick, “Army looks to optimize lethality with high-energy lasers,” U.S. Army, February 8, 2018, https://www./article/200308/army_looks_to_optimize_lethality_with_high_energy_lasers; Jen Judson, “Dynetics-Lockheed team beats out Raytheon to build 100-kilowatt laser weapon,” Defense News, May 15, 2019, https://www./land/2019/05/16/dynetics-lockheed-team-beats-out-raytheon-to-build-100-kilowatt-laser-weapon/; “Multi-Mission High Energy Laser MMHEL,” U.S. Army Space and Missile Defense Center, https://www.smdc./Portals/38/Documents/Publications/Fact_Sheets/MMHEL.pdf; Garrett Reim, “US Air Force Research Lab starts building airborne laser weapon,” Flight Global, February 23, 2021, https://www./fixed-wing/us-air-force-research-lab-starts-building-airborne-laser-weapon/142578.article; and Air Force Research Laboratory, AFRL Directed Energy Directorate: Laser Weapon Systems Albuquerque, NM: Air Force Research Laboratory, 2016, https://www.kirtland./Portals/52/documents/LaserSystems.pdf.

43Barbara Gefvert et al., “Annual Laser Market Review & Forecast 2019: What goes up…,” Laser Focus World, January 1, 2019, https://www./lasers-sources/article/16556290/annual-laser-market-review-forecast-2019-what-goes-up; “Air Force Research Laboratory completes successful shoot down of air-launched missiles,” 88th Air Base Wing Public Affairs, May 3, 2019, https://www. wpafb./DesktopModules/ArticleCS/Print.aspx?PortalId=60&ModuleId=8664&Article=1834836; Mikayla Mast, “High energy laser engineers engage with West Point cadets,” U.S. Army, March 18, 2020, https://www./article/233764/high_energy_laser_engineers_engage_with_west_point_cadets; Kyle Mizokami, “The U.S. Army Plans To Field the Most Powerful Laser Weapon Yet,” Popular Mechanics, August 7, 2019, https://www./military/weapons/a28636854/powerful-laser-weapon/; and Bryan Ripple, “Enemy drone operators may soon face the power of THOR,” 88th Air Base Wing Public Affairs, September 24, 2019, https://www.wpafb./DesktopModules/ArticleCS/Print. aspx?PortalId=60&ModuleId=8664&Article=1969142; and Hecht, “Fiber Lasers Mean Ray Guns Are Coming.”

44Office of the Undersecretary of Defense Comptroller, Department of Defense Fiscal Year FY2018 Budget Estimates: Missile Defense Agency Defense-Wide Justification Book Volume 2a of 2: Research Development, Test & Evaluation, Defense-Wide Washington, DC: U.S. Department of Defense, May 2017, https://comptroller. /Portals/45/Documents/defbudget/FY2018/budget_justification/pdfs/03_RDT_and_E/U_RDTE_ MasterJustificationBook_Missile_Defense_Agency_PB_2018_Vol2a_Vol2b.pdf; Aaron Mehta, “Griffin 'extremely skeptical’ of airborne lasers for missile defense,” Defense News, May 20, 2020, https://www.defensenews. com/2020/05/20/griffin-extremely-skeptical-of-airborne-lasers-for-missile-defense/; U.S. Congress, National Defense Authorization Act for Fiscal Year 2021, H.R 6395, 116th Cong., 2nd sess., Introduced in House March 3, 2020, https://www./bill/116th-congress/house-bill/6395; and U.S. Congress, House, Subcommittee on Strategic Forces, FY21 National Defense Authorization Bill, 116th Cong., 2nd sess., June 21, 2020, https://www./116/meeting/house/110784/documents/BILLS-116HR6395ih-STRSubcommitteeMarkup.pdf.

(平台编辑:黄潇潇)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多