导读:Hive 窗口函数不同于我们熟悉的常规函数及聚合函数,它为每行数据进行一次计算,特点是输入多行(一个窗口)、返回一个值。在报表等数据分析场景中,窗口函数真的很强大,灵活运用窗口函数可以解决很多复杂问题,比如去重、排名、同比及环比、连续登录等等。 👆点击关注|设为星标|干货速递👆 窗口函数(Window Function)是 SQL2003 标准中定义的一项新特性,并在 SQL2011、SQL2016 中又加以完善,添加了若干拓展。 窗口函数不同于我们熟悉的常规函数及聚合函数,它为每行数据进行一次计算,特点是输入多行(一个窗口)、返回一个值。 在报表等数据分析场景中,你会发现窗口函数真的很强大,灵活运用窗口函数可以解决很多复杂问题,比如去重、排名、同比及环比、连续登录等等。 既然窗口函数这么强大,更要了解和灵活运用它了,本文将对窗口函数进行一个全面的整理,讲一讲窗口函数是什么,有哪些分类,用法是什么,以及窗口函数的案例加深大家的理解。 那什么是窗口函数呢? 窗口函数出现在 SELECT 子句的表达式列表中,它最显著的特点就是 OVER 关键字。语法定义如下: Function (arg1,..., argn) OVER ([PARTITION BY <...>] [ORDER BY <....>] []) Function (arg1,..., argn) 可以是下面的函数: Aggregate Functions: 聚合函数,比如:sum(...)、 max(...)、min(...)、avg(...)等. Sort Functions: 数据排序函数, 比如 :rank(...)、row_number(...)等. Analytics Functions: 统计和比较函数, 比如:lead(...)、lag(...)、 first_value(...)等. OVER ([PARTITION BY <...>] [ORDER BY <....>] PARTITION BY 表示将数据先按 字段 进行分区 ORDER BY 表示将各个分区内的数据按 排序字段 进行排序 ![]() c1jWq8 window_expression 用于确定窗边界名词含义 preceding 往前 following 往后 current row 当前行 unbounded 起点 unbounded preceding 从前面的起点 unbounded following 到后面的终点 窗口边界使用详解 ![]() 如果不指定 PARTITION BY,则不对数据进行分区,换句话说,所有数据看作同一个分区; 如果不指定 ORDER BY,则不对各分区做排序,通常用于那些顺序无关的窗口函数,例如 SUM() 如果不指定窗口子句,则默认采用以下的窗口定义: 若不指定 ORDER BY,默认使用分区内所有行 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING;若指定了 ORDER BY,默认使用分区内第一行到当前值 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. 窗口函数的计算过程(语法中每个部分都是可选的) 按窗口定义,将所有输入数据分区、再排序(如果需要的话) 对每一行数据,计算它的窗口范围 将窗口内的行集合输入窗口函数,计算结果填入当前行 数据准备-- 创建表 CREATE TABLE IF NOT EXISTS q1_sales ( emp_name string, emp_mgr string, dealer_id int, sales int, stat_date string ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED as TEXTFILE; -- 插入测试数据 insert into table q1_sales (emp_name,emp_mgr,dealer_id,sales,stat_date) values ('Beverly Lang','Mike Palomino',2,16233,'2020-01-01'), ('Kameko French','Mike Palomino',2,16233,'2020-01-03'), ('Ursa George','Rich Hernandez',3,15427,'2020-01-04'), ('Ferris Brown','Dan Brodi',1,19745,'2020-01-02'), ('Noel Meyer','Kari Phelps',1,19745,'2020-01-05'), ('Abel Kim','Rich Hernandez',1,12369,'2020-01-03'), ('Raphael Hull','Kari Phelps',1,8227,'2020-01-02'), ('Jack Salazar','Kari Phelps',1,9710,'2020-01-01'), ('May Stout','Rich Hernandez',3,9308,'2020-01-05'), ('Haviva Montoya','Mike Palomino',2,9308,'2020-01-03'); -- 查看测试数据信息 select * from q1_sales; +--------------------+-------------------+---------------------+-----------------+---------------------+ | q1_sales.emp_name | q1_sales.emp_mgr | q1_sales.dealer_id | q1_sales.sales | q1_sales.stat_date | +--------------------+-------------------+---------------------+-----------------+---------------------+ | Beverly Lang | Mike Palomino | 2 | 16233 | 2020-01-01 | | Kameko French | Mike Palomino | 2 | 16233 | 2020-01-03 | | Ursa George | Rich Hernandez | 3 | 15427 | 2020-01-04 | | Ferris Brown | Dan Brodi | 1 | 19745 | 2020-01-02 | | Noel Meyer | Kari Phelps | 1 | 19745 | 2020-01-05 | | Abel Kim | Rich Hernandez | 1 | 12369 | 2020-01-03 | | Raphael Hull | Kari Phelps | 1 | 8227 | 2020-01-02 | | Jack Salazar | Kari Phelps | 1 | 9710 | 2020-01-01 | | May Stout | Rich Hernandez | 3 | 9308 | 2020-01-05 | | Haviva Montoya | Mike Palomino | 2 | 9308 | 2020-01-03 | +--------------------+-------------------+---------------------+-----------------+---------------------+ 10 rows selected (0.223 seconds) 窗口聚合函数有哪些?窗口函数返回类型函数功能说明 AVG() 参数类型为DECIMAL的返回类型为DECIMAL,其他为DOUBLE AVG 窗口函数返回输入表达式值的平均值,忽略 NULL 值。 COUNT() BIGINT COUNT 窗口函数计算输入行数。COUNT(*) 计算目标表中的所有行,包括Null值;COUNT(expression) 计算特定列或表达式中具有非 NULL 值的行数。 MAX() 与传参类型一致 MAX窗口函数返回表达式在所有输入值中的最大值,忽略 NULL 值。 MIN() 与传参类型一致 MIN窗口函数返回表达式在所有输入值中的最小值,忽略 NULL 值。 SUM() 针对传参类型为DECIMAL的,返回类型一致;除此之外的浮点型为DOUBLE;传参类型为整数类型的,返回类型为BIGINT SUM窗口函数返回所有输入值的表达式总和,忽略 NULL 值。 select emp_name, emp_mgr, dealer_id, sales, sum(sales) over () as sample1, -- 所有sales和 sum(sales) over (partition by dealer_id) as sample2, -- 按dealer_id分组,组内数据累加 sum(sales) over (partition by dealer_id ORDER BY stat_date) as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加 sum(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合 sum(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW) as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合 sum(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合 sum(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行 from q1_sales; ![]() hive sum窗口函数select emp_name, emp_mgr, dealer_id, sales, count(sales) over () as sample1, -- 所有条数 count(sales) over (partition by dealer_id) as sample2, -- 按dealer_id分组,组内数据数量 count(sales) over (partition by dealer_id ORDER BY stat_date) as sample3, -- 按dealer_id分组,时间排序,组内数据条数逐个相加 count(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合 count(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW) as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合 count(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合 count(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行 from q1_sales; ![]() hive count窗口函数 select emp_name, emp_mgr, dealer_id, sales, avg(sales) over () as sample1, -- 所有sales聚合 avg(sales) over (partition by dealer_id) as sample2, -- 按dealer_id分组,组内数据累加 avg(sales) over (partition by dealer_id ORDER BY stat_date) as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加 avg(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合 avg(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW) as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合 avg(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合 avg(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行 from q1_sales; ![]() hive avg窗口函数select emp_name, emp_mgr, dealer_id, sales, max(sales) over () as sample1, -- 所有sales聚合 max(sales) over (partition by dealer_id) as sample2, -- 按dealer_id分组,组内数据累加 max(sales) over (partition by dealer_id ORDER BY stat_date) as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加 max(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合 max(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW) as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合 max(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合 max(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行 from q1_sales; ![]() max select emp_name, emp_mgr, dealer_id, sales, min(sales) over () as sample1, -- 所有sales聚合 min(sales) over (partition by dealer_id) as sample2, -- 按dealer_id分组,组内数据累加 min(sales) over (partition by dealer_id ORDER BY stat_date) as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加 min(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合 min(sales) OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW) as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合 min(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合 min(sales) over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行 from q1_sales; ![]() min 排名窗口函数窗口函数返回类型函数功能说明 ROW_NUMBER() BIGINT 根据具体的分组和排序,为每行数据生成一个起始值等于1的唯一序列数 RANK() BIGINT 对组中的数据进行排名,如果名次相同,则排名也相同,但是下一个名次的排名序号会出现不连续。 DENSE_RANK() dense是稠密的意思,可以引申记忆 BIGINT dense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。当出现名次相同时,则排名序号也相同。而下一个排名的序号与上一个排名序号是连续的。 PERCENT_RANK() DOUBLE 计算给定行的百分比排名。可以用来计算超过了百分之多少的人;排名计算公式为:(当前行的rank值-1)/(分组内的总行数-1) CUME_DIST() DOUBLE 计算某个窗口或分区中某个值的累积分布。假定升序排序,则使用以下公式确定累积分布:小于等于当前值x的行数 / 窗口或partition分区内的总行数。其中,x 等于 order by 子句中指定的列的当前行中的值 NTILE() INT 已排序的行划分为大小尽可能相等的指定数量的排名的组,并返回给定行所在的组的排名。如果切片不均匀,默认增加第一个切片的分布,不支持ROWS BETWEENselect *, ROW_NUMBER() over(partition by dealer_id order by sales desc) rk01, RANK() over(partition by dealer_id order by sales desc) rk02, DENSE_RANK() over(partition by dealer_id order by sales desc) rk03, PERCENT_RANK() over(partition by dealer_id order by sales desc) rk04 from q1_sales; ![]() 开窗排名函数 select *, CUME_DIST() over(partition by dealer_id order by sales ) rk05, CUME_DIST() over(partition by dealer_id order by sales desc) rk06 from q1_sales; ![]() 开窗函数CUME_DISTselect *, NTILE(2) over(partition by dealer_id order by sales ) rk07, NTILE(3) over(partition by dealer_id order by sales ) rk08, NTILE(4) over(partition by dealer_id order by sales ) rk09 from q1_sales; ![]() 开窗函数NTILE 值窗口函数窗口函数返回类型函数功能说明 LAG() 与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL. LEAD() 用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL. FIRST_VALUE 取分组内排序后,截止到当前行,第一个值 LAST_VALUE 取分组内排序后,截止到当前行,最后一个值 注意: last_value默认的窗口是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,表示当前行永远是最后一个值,需改成RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING。 select emp_name, dealer_id, sales, first_value(sales) over (partition by dealer_id order by sales) as dealer_low from q1_sales; |-----------------|------------|--------|-------------| | emp_name | dealer_id | sales | dealer_low | |-----------------|------------|--------|-------------| | Raphael Hull | 1 | 8227 | 8227 | | Jack Salazar | 1 | 9710 | 8227 | | Ferris Brown | 1 | 19745 | 8227 | | Noel Meyer | 1 | 19745 | 8227 | | Haviva Montoya | 2 | 9308 | 9308 | | Beverly Lang | 2 | 16233 | 9308 | | Kameko French | 2 | 16233 | 9308 | | May Stout | 3 | 9308 | 9308 | | Abel Kim | 3 | 12369 | 9308 | | Ursa George | 3 | 15427 | 9308 | |-----------------|------------|--------|-------------| 10 rows selected (0.299 seconds) select emp_name, dealer_id, sales, `year`, last_value(sales) over (partition by emp_name order by `year`) as last_sale from emp_sales where `year` = 2013; |-----------------|------------|--------|-------|------------| | emp_name | dealer_id | sales | year | last_sale | |-----------------|------------|--------|-------|------------| | Beverly Lang | 2 | 5324 | 2013 | 5324 | | Ferris Brown | 1 | 22003 | 2013 | 22003 | | Haviva Montoya | 2 | 6345 | 2013 | 13100 | | Haviva Montoya | 2 | 13100 | 2013 | 13100 | | Kameko French | 2 | 7540 | 2013 | 7540 | | May Stout | 2 | 4924 | 2013 | 15000 | | May Stout | 2 | 8000 | 2013 | 15000 | | May Stout | 2 | 15000 | 2013 | 15000 | | Noel Meyer | 1 | 13314 | 2013 | 13314 | | Raphael Hull | 1 | -4000 | 2013 | 14000 | | Raphael Hull | 1 | 14000 | 2013 | 14000 | | Ursa George | 1 | 10865 | 2013 | 10865 | |-----------------|------------|--------|-------|------------| 12 rows selected (0.284 seconds) 开窗案例举例 如何使用开窗函数去重 select * from (select *,row_number() over(partition by emp_mgr order by stat_date desc) rk from q1_sales) tmp where rk = 1; +-----------------+-----------------+----------------+------------+----------------+---------+ | tmp.emp_name | tmp.emp_mgr | tmp.dealer_id | tmp.sales | tmp.stat_date | tmp.rk | +-----------------+-----------------+----------------+------------+----------------+---------+ | Ferris Brown | Dan Brodi | 1 | 19745 | 2020-01-02 | 1 | | Noel Meyer | Kari Phelps | 1 | 19745 | 2020-01-05 | 1 | | Haviva Montoya | Mike Palomino | 2 | 9308 | 2020-01-03 | 1 | | May Stout | Rich Hernandez | 3 | 9308 | 2020-01-05 | 1 | +-----------------+-----------------+----------------+------------+----------------+---------+ 4 rows selected (25.707 seconds) ![]() 窗口函数去重 如何使用开窗函数进行排名select *,row_number() over(partition by dealer_id order by sales desc) rk from q1_sales; +--------------------+-------------------+---------------------+-----------------+---------------------+-----+ | q1_sales.emp_name | q1_sales.emp_mgr | q1_sales.dealer_id | q1_sales.sales | q1_sales.stat_date | rk | +--------------------+-------------------+---------------------+-----------------+---------------------+-----+ | Noel Meyer | Kari Phelps | 1 | 19745 | 2020-01-05 | 1 | | Ferris Brown | Dan Brodi | 1 | 19745 | 2020-01-02 | 2 | | Abel Kim | Rich Hernandez | 1 | 12369 | 2020-01-03 | 3 | | Jack Salazar | Kari Phelps | 1 | 9710 | 2020-01-01 | 4 | | Raphael Hull | Kari Phelps | 1 | 8227 | 2020-01-02 | 5 | | Kameko French | Mike Palomino | 2 | 16233 | 2020-01-03 | 1 | | Beverly Lang | Mike Palomino | 2 | 16233 | 2020-01-01 | 2 | | Haviva Montoya | Mike Palomino | 2 | 9308 | 2020-01-03 | 3 | | Ursa George | Rich Hernandez | 3 | 15427 | 2020-01-04 | 1 | | May Stout | Rich Hernandez | 3 | 9308 | 2020-01-05 | 2 | +--------------------+-------------------+---------------------+-----------------+---------------------+-----+ 10 rows selected (23.38 seconds) ![]() 窗口函数排名 数仓增量数据合并 基于上述的排名和区中方法结合,可以实现数仓增量抽取的数据和历史数据合并去重。 你需要了解的全量表,增量表及拉链表 环比 数据准备 select * from temp_test12; create table if not exists temp_test12 ( month string comment '月份', shop string comment '店铺', money string comment '营业额' ); insert into table temp_test12 (month,shop,money) values ('2019-01','a',1), ('2019-04','a',4), ('2019-02','a',2), ('2019-03','a',3), ('2019-06','a',6), ('2019-05','a',5), ('2019-01','b',2), ('2019-02','b',4), ('2019-03','b',6), ('2019-04','b',8), ('2019-05','b',10), ('2019-06','b',12); select * from temp_test12; +--------------------+-------------------+---------------------+ | temp_test12.month | temp_test12.shop | temp_test12.money | +--------------------+-------------------+---------------------+ | 2019-01 | a | 1 | | 2019-04 | a | 4 | | 2019-02 | a | 3 | | 2019-03 | a | 4 | | 2019-06 | a | 6 | | 2019-05 | a | 5 | | 2019-01 | b | 2 | | 2019-02 | b | 4 | | 2019-03 | b | 6 | | 2019-04 | b | 8 | | 2019-05 | b | 10 | | 2019-06 | b | 12 | +--------------------+-------------------+--------------------+ 10 rows selected (23.38 seconds) 需求描述 查询店铺上个月的营业额,结果字段如下: | 月份 | 商铺 | 本月营业额 | 上月营业额| 不使用开窗函数实现方案实现这个需求我们需要先使用row_number()over按商铺分组,按月份排序得出这样一个结果: SELECT month ,shop ,money ,ROW_NUMBER() OVER ( PARTITION BY shop ORDER BY month ) AS rn FROM temp_test12; 结果: month shop money rn 2019-01 a 1 1 2019-02 a 2 2 2019-03 a 3 3 2019-04 a 4 4 2019-05 a 5 5 2019-06 a 6 6 2019-01 b 2 1 2019-02 b 4 2 2019-03 b 6 3 2019-04 b 8 4 2019-05 b 10 5 2019-06 b 12 6 然后进行偏移自关联,将每个商铺的每个月的营业额和上个月的关联在一起: WITH a AS ( SELECT month ,shop ,MONEY ,ROW_NUMBER() OVER ( PARTITION BY shop ORDER BY month ) AS rn FROM temp_test12 ) SELECT a1.month ,a1.shop ,a1.MONEY ,nvl(a2.month, '2018-12') before_month --为了便于理解,这里加入上月的月份。如果上月没有的月份取为2018-12 ,nvl(a2.MONEY, 1) before_money --上月没有的营业额取为1 FROM a a1 --代表本月 LEFT JOIN a a2 --代表上月 ON a1.shop = a2.shop AND a1.month = substr(add_months(CONCAT ( a2.month ,'-01' ), 1), 1, 7) --增加月份的函数add_months中至少要传入年月日 GROUP BY a1.month ,a1.shop ,a1.MONEY ,nvl(a2.month, '2018-12') ,nvl(a2.MONEY, 1); 结果: a1.month a1.shop a1.money before_month before_money 2019-01 a 1 2018-12 1 2019-02 a 2 2019-01 1 2019-03 a 3 2019-02 2 2019-04 a 4 2019-03 3 2019-05 a 5 2019-04 4 2019-06 a 6 2019-05 5 2019-01 b 2 2018-12 1 2019-02 b 4 2019-01 2 2019-03 b 6 2019-02 4 2019-04 b 8 2019-03 6 2019-05 b 10 2019-04 8 2019-06 b 12 2019-05 10 lag 开窗函数实现环比 SELECT month ,shop ,MONEY ,LAG(MONEY, 1, 1) OVER ( --取分组内上一行的营业额,如果没有上一行则取1 PARTITION BY shop ORDER BY month --按商铺分组,按月份排序 ) AS before_money FROM temp_test12; -- 结果集如下 month shop money before_money 2019-01 a 1 1 2019-02 a 2 1 2019-03 a 3 2 2019-04 a 4 3 2019-05 a 5 4 2019-06 a 6 5 2019-01 b 2 1 2019-02 b 4 2 2019-03 b 6 4 2019-04 b 8 6 2019-05 b 10 8 2019-06 b 12 10 lag 其他用法演示SELECT month ,shop ,MONEY ,LAG(MONEY, 1, 1) OVER ( PARTITION BY shop ORDER BY month ) AS before_money ,LAG(MONEY, 1) OVER ( PARTITION BY shop ORDER BY month ) AS before_money --第三个参数不写的话,如果没有上一行值,默认取null ,LAG(MONEY) OVER ( PARTITION BY shop ORDER BY month ) AS before_money --第二个参数不写默认为1,第三个参数不写的话,如果没有上一行值,默认取null,结果与上一列相同 ,LAG(MONEY, 2, 1) OVER ( PARTITION BY shop ORDER BY month ) AS before_2month_money --取两个月前的营业额 FROM temp_test12; -- 结果集 month shop money before_money before_money before_money before_2month_money 2019-01 a 1 1 NULL NULL 1 2019-02 a 2 1 1 1 1 2019-03 a 3 2 2 2 1 2019-04 a 4 3 3 3 2 2019-05 a 5 4 4 4 3 2019-06 a 6 5 5 5 4 2019-01 b 2 1 NULL NULL 1 2019-02 b 4 2 2 2 1 2019-03 b 6 4 4 4 2 2019-04 b 8 6 6 6 4 2019-05 b 10 8 8 8 6 2019-06 b 12 10 10 10 8 -- 解释说明: -- shop为a时,before_money指定了往上第1行的值,如果没有上一行值,默认取null,这里指定为1。 -- a的第1行,往上1行值为NULL,指定第三个参数取1,不指定取null 。 -- a的第2行,往上1行值为第1行营业额值,1。 -- a的第6行,往上1行值为为第5行营业额值,5 lead 求下月营业额 lead(col,n,default)与lag相反,统计分组内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,不填默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)。 新添一列每个商铺下个月的营业额,结果字段如下: 月份 商铺 本月营业额 下月营业额 SELECT month ,shop ,MONEY ,LEAD(MONEY, 1, 7) OVER ( PARTITION BY shop ORDER BY month ) AS after_money ,LEAD(MONEY, 1) OVER ( PARTITION BY shop ORDER BY month ) AS after_money --第三个参数不写的话,如果没有下一行值,默认取null ,LEAD(MONEY, 2, 7) OVER ( PARTITION BY shop ORDER BY month ) AS after_2month_money --取两个月后的营业额 FROM temp_test12; 结果: month shop money after_money after_money after_2month_money 2019-01 a 1 2 2 3 2019-02 a 2 3 3 4 2019-03 a 3 4 4 5 2019-04 a 4 5 5 6 2019-05 a 5 6 6 7 2019-06 a 6 7 NULL 7 2019-01 b 2 4 4 6 2019-02 b 4 6 6 8 2019-03 b 6 8 8 10 2019-04 b 8 10 10 12 2019-05 b 10 12 12 7 2019-06 b 12 7 NULL 7 解释说明: shop为a时,after_money指定了往下第1行的值,如果没有下一行值,默认取null,这里指定为1。 a的第1行,往下1行值为第2行营业额值,2。 a的第2行,往下1行值为第3行营业额值,4。 a的第6行,往下1行值为NULL,指定第三个参数取7,不指定取null。 first_value(col) 用于取分组内排序后,截止到当前行,第一个col的值。ELECT month ,shop ,MONEY ,first_value(MONEY) OVER ( PARTITION BY shop ORDER BY month ) AS first_money FROM temp_test12; 结果: month shop money first_money 2019-01 a 1 1 2019-02 a 2 1 2019-03 a 3 1 2019-04 a 4 1 2019-05 a 5 1 2019-06 a 6 1 2019-01 b 2 2 2019-02 b 4 2 2019-03 b 6 2 2019-04 b 8 2 2019-05 b 10 2 2019-06 b 12 2 解释说明: shop为a时,截止到每一行时,分组内的第一行值都是1。 shop为b时,截止到每一行时,分组内的第一行值都是2。 last_value(col) 用于取分组内排序后,截止到当前行,最后一个col的值。 SELECT month ,shop ,MONEY ,last_value(MONEY) OVER ( PARTITION BY shop ORDER BY month ) AS last_money FROM temp_test12; 结果: month shop money last_money 2019-01 a 1 1 2019-02 a 2 2 2019-03 a 3 3 2019-04 a 4 4 2019-05 a 5 5 2019-06 a 6 6 2019-01 b 2 2 2019-02 b 4 4 2019-03 b 6 6 2019-04 b 8 8 2019-05 b 10 10 2019-06 b 12 12 解释说明: shop为a时,截止到每一行时,分组内的最后一行值都是该行本身。 shop为b时,截止到每一行时,分组内的最后一行值都是该行本身。 连续登录 数据准备源数据,文件中是以,号隔开的 id,date A,2018-09-04 B,2018-09-04 C,2018-09-04 A,2018-09-05 A,2018-09-05 C,2018-09-05 A,2018-09-06 B,2018-09-06 C,2018-09-06 A,2018-09-04 B,2018-09-04 C,2018-09-04 A,2018-09-05 A,2018-09-05 C,2018-09-05 A,2018-09-06 B,2018-09-06 C,2018-09-06 展现连续登陆两天的用户信息 select * from ( select id , date, lead(date,1,-1) over(partition by id order by date desc ) as date1 -- 按照用户分组,登录时间降序排序,获取上一次登录日期 from tb_use a group by id,date -- 去重当日重复登录, ) as b where date_sub(cast(b.date as date),1)=cast(b.date1 as date); -- 判定当前登录日期的上一天是否与上一次登录日期一致,一致则判定为连续登录 结果: b.id b.date b.date1 A 2018-09-06 2018-09-05 A 2018-09-05 2018-09-04 C 2018-09-06 2018-09-05 C 2018-09-05 2018-09-04 统计连续登陆两天的用户个数 (n天就只需要把lead(date,2,-1)中的2改成n-1并且把date_sub(cast(b.date as date),2)中的2改成n-1)select count(distinct b.id) as c1 from ( select id ,date, lead(date,1,-1) over(partition by id order by date desc ) as date1 from tb_use a group by id,date ) as b where date_sub(cast(b.date as date),1)=cast(b.date1 as date); 结果: c1 2 特说说明:上文指出了连续登录2天的场景,针对其他连续登录场景,假设连续登录n天,可将lead(date,1,-1)中的1改成n-1,date_sub(cast(b.date as date),1)中的1改成n-1。 占比、同比、环比计算(lag函数,lead函数) 数据准备 -- 创建表并插入数据 CREATE TABLE `saleorder` ( `order_id` int , `order_time` date , `order_num` int ) -- 插入测试数据 INSERT INTO `saleorder` VALUES (1, '2020-04-20', 420), (2, '2020-04-04', 800), (3, '2020-03-28', 500), (4, '2020-03-13', 100), (5, '2020-02-27', 300), (6, '2020-01-07', 450), (7, '2019-04-07', 800), (8, '2019-03-15', 1200), (9, '2019-02-17', 200), (10, '2019-02-07', 600), (11, '2019-01-13', 300); select * from saleorder; +---------------------+-----------------------+----------------------+ | saleorder.order_id | saleorder.order_time | saleorder.order_num | +---------------------+-----------------------+----------------------+ | 1 | 2020-04-20 | 420 | | 2 | 2020-04-04 | 800 | | 3 | 2020-03-28 | 500 | | 4 | 2020-03-13 | 100 | | 5 | 2020-02-27 | 300 | | 6 | 2020-01-07 | 450 | | 7 | 2019-04-07 | 800 | | 8 | 2019-03-15 | 1200 | | 9 | 2019-02-17 | 200 | | 10 | 2019-02-07 | 600 | | 11 | 2019-01-13 | 300 | +---------------------+-----------------------+----------------------+ 11 rows selected (0.331 seconds) 使用窗口函数实现占比SELECT order_month, num, -- 月销量 total, -- 年销量 round( num / total, 2 ) AS ratio -- 月销量占年销量比 FROM ( select substr(order_time, 1, 7) as order_month, --查询月份 sum(order_num) over (partition by substr(order_time, 1, 7)) as num, --根据月份分组,统计月销量 sum( order_num ) over ( PARTITION BY substr( order_time, 1, 4 ) ) total, --根据年分组,统计年销量 row_number() over (partition by substr(order_time, 1, 7)) as rk from saleorder ) temp where rk = 1; +--------------+-------+--------+--------+ | order_month | num | total | ratio | +--------------+-------+--------+--------+ | 2019-04 | 800 | 3100 | 0.26 | | 2019-03 | 1200 | 3100 | 0.39 | | 2019-02 | 800 | 3100 | 0.26 | | 2019-01 | 300 | 3100 | 0.1 | | 2020-04 | 1220 | 2570 | 0.47 | | 2020-03 | 600 | 2570 | 0.23 | | 2020-02 | 300 | 2570 | 0.12 | | 2020-01 | 450 | 2570 | 0.18 | +--------------+-------+--------+--------+ 8 rows selected (49.433 seconds) ![]() Hive窗口函数占比结算 使用窗口函数实现环比计算 什么是环比、什么是同比?与上年度数据对比称'同比',与上月数据对比称'环比'。 相关公式如下: 同比增长率计算公式:(当年值-上年值)/上年值x100% 环比增长率计算公式:(当月值-上月值)/上月值x100% -- 环比增长率 select now_month, now_num, last_num, concat( nvl ( round( ( now_num - last_num ) / last_num * 100, 2 ), 0 ), '%' ) FROM ( -- 2、查询上月销量 select now_month, now_num, lag( t1.now_num, 1 ) over (order by t1.now_month ) as last_num from ( -- 1、按月统计销量 select substr(order_time, 1, 7) as now_month, sum(order_num) as now_num from saleorder group by substr(order_time, 1, 7) ) t1 ) t2; +------------+----------+-----------+----------+ | now_month | now_num | last_num | _c3 | +------------+----------+-----------+----------+ | 2019-01 | 300 | NULL | 0.0% | | 2019-02 | 800 | 300 | 166.67% | | 2019-03 | 1200 | 800 | 50.0% | | 2019-04 | 800 | 1200 | -33.33% | | 2020-01 | 450 | 800 | -43.75% | | 2020-02 | 300 | 450 | -33.33% | | 2020-03 | 600 | 300 | 100.0% | | 2020-04 | 1220 | 600 | 103.33% | +------------+----------+-----------+----------+ 8 rows selected (50.521 seconds) -- 同比增长率计算公式 同比的话,如果每个月都齐全,都有数据lag(num,12)就ok.。我们的例子中只有19年和20年1-4月份的数据。这种特殊情况应该如何处理? SELECT t1.now_month, nvl ( now_num, 0 ) AS now_num, nvl ( last_num, 0 ) AS last_num, nvl ( round( ( now_num - last_num ) / last_num, 2 ), 0 ) AS ratio FROM ( SELECT DATE_FORMAT( order_time, 'yyyy-MM' ) AS now_month, sum( order_num ) AS now_num FROM saleorder GROUP BY DATE_FORMAT( order_time, 'yyyy-MM' ) ) t1 LEFT JOIN ( SELECT DATE_FORMAT( DATE_ADD( order_time, 365 ), 'yyyy-MM' ) AS now_month, sum( order_num ) AS last_num FROM saleorder GROUP BY DATE_FORMAT( DATE_ADD( order_time, 365 ), 'yyyy-MM' ) ) AS t2 ON t1.now_month = t2.now_month; +---------------+----------+-----------+--------+ | t1.now_month | now_num | last_num | ratio | +---------------+----------+-----------+--------+ | 2019-01 | 300 | 0 | 0.0 | | 2019-02 | 800 | 0 | 0.0 | | 2019-03 | 1200 | 0 | 0.0 | | 2019-04 | 800 | 0 | 0.0 | | 2020-01 | 450 | 300 | 0.5 | | 2020-02 | 300 | 800 | -0.63 | | 2020-03 | 600 | 1200 | -0.5 | | 2020-04 | 1220 | 800 | 0.53 | +---------------+----------+-----------+--------+ 8 rows selected (76.929 seconds) ![]() ![]() 其他案例-- 建表 CREATE TABLE order_info ( name string, orderdate string, cost string ); -- 数据加载 INSERT INTO table order_info (name,orderdate,cost) VALUE ('jack','2020-01-01','10'), ('tony','2020-01-02','15'), ('jack','2020-02-03','23'), ('tony','2020-01-04','29'), ('jack','2020-01-05','46'), ('jack','2020-04-06','42'), ('tony','2020-01-07','50'), ('jack','2020-01-08','55'), ('mart','2020-04-08','62'), ('mart','2020-04-09','68'), ('neil','2020-05-10','12'), ('mart','2020-04-11','75'), ('neil','2020-06-12','80'), ('mart','2020-04-13','94'); SELECT name, orderdate, cost, --当前window内,当前行的前一行到后一行 金额总和 sum(cast(cost AS INT)) over(PARTITION BY name ORDER BY orderdate DESC ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS precedingFollow, --当前window内,当前行到最后行的金额总和 sum(cast(cost AS INT)) over(PARTITION BY name ORDER BY orderdate DESC ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS currentFollow, --当前window内,按照时间进行排序 row_number() OVER(PARTITION BY name ORDER BY orderdate DESC) AS rank,--用户上次购买的时间 lag(orderdate,1,'查无结果') over(PARTITION BY name ORDER BY orderdate) AS lastTime,--用户下一次购买的时间 lead(orderdate,1,'查无结果') over(PARTITION BY name ORDER BY orderdate)AS nextTime,--用户上次购物金额 lag(cost,1,'查无结果')over(PARTITION BY name ORDER BY orderdate) AS lastCost,--用户下次购物金额 lead(cost,1,'查无结果') OVER (PARTITION BY name ORDER BY orderdate) AS nextCost,--用户上一次+这次的购物金额 sum(cast(cost AS INT)) over(PARTITION BY name ORDER BY orderdate ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS lastCurrentCost,--用户每月购物金额 sum(cast(cost AS INT)) over(PARTITION BY name,month(orderdate) ORDER BY month(orderdate)) AS monthCost,--用户当月单词消费最大值 max(cast(cost AS INT)) over(PARTITION BY name,month(orderdate) ORDER BY orderdate) AS monthMaxCost,--用户当月单词消费最小值 min(cast(cost AS INT)) over(PARTITION BY name,month(orderdate) ORDER BY orderdate) as monthMinCost FROM TEST.COSTITEM 间隔,最近两次间隔,登录间隔,出院间隔等等 select user_name, age, in_hosp, out_hosp, datediff(in_hosp,LAG(out_hosp,1,in_hosp) OVER(PARTITION BY user_name ORDER BY out_hosp asc)) as days from t_hosp; 扩展 一些优化思想 ![]() 有时候,一个 SELECT 语句中包含多个窗口函数,它们的窗口定义(OVER 子句)可能相同、也可能不同。显然,对于相同的窗口,完全没必要再做一次分区和排序,我们可以将它们合并成一个 Window 算子。 那如何利用一次排序计算多个窗口函数呢?某些情况下,这是可能的。下面的例子如下:ROW_NUMBER() OVER (PARTITION BY dealer_id ORDER BY sales) AS rank, AVG(sales) OVER (PARTITION BY dealer_id) AS avgsales ... 虽然这 2 个窗口并非完全一致,但是 AVG(sales) 不关心分区内的顺序,完全可以复用 ROW_NUMBER() 的窗口,这里提供了一种方式,尽一切可能利用能够复用的机会。 窗口函数 VS. 聚合函数 从聚合这个意义上出发,似乎窗口函数和 Group By 聚合函数都能做到同样的事情。但是,它们之间的相似点也仅限于此了!这其中的关键区别在于:窗口函数仅仅只会将结果附加到当前的结果上,它不会对已有的行或列做任何修改。而 Group By 的做法完全不同:对于各个 Group 它仅仅会保留一行聚合结果。 有的读者可能会问,加了窗口函数之后返回结果的顺序明显发生了变化,这不算一种修改吗?因为 SQL 及关系代数都是以 multi-set 为基础定义的,结果集本身并没有顺序可言,ORDER BY 仅仅是最终呈现结果的顺序。 另一方面,从逻辑语义上说,SELECT 语句的各个部分可以看作是按以下顺序“执行”的: ![]() 窗口函数执行 注意到窗口函数的求值仅仅位于 ORDER BY 之前,而位于 SQL 的绝大部分之后。这也和窗口函数只附加、不修改的语义是呼应的,结果集在此时已经确定好了,再依次计算窗口函数。 |
|
来自: 520jefferson > 《大数据》