分享

2万字长文,最全面的Hive开窗函数讲解和实战指南(必看)

 520jefferson 2022-12-30 发布于北京

导读:Hive 窗口函数不同于我们熟悉的常规函数及聚合函数,它为每行数据进行一次计算,特点是输入多行(一个窗口)、返回一个值。在报表等数据分析场景中,窗口函数真的很强大,灵活运用窗口函数可以解决很多复杂问题,比如去重、排名、同比及环比、连续登录等等。

👆点击关注|设为星标|干货速递👆

窗口函数(Window Function)是 SQL2003 标准中定义的一项新特性,并在 SQL2011、SQL2016 中又加以完善,添加了若干拓展。

窗口函数不同于我们熟悉的常规函数及聚合函数,它为每行数据进行一次计算,特点是输入多行(一个窗口)、返回一个值。

在报表等数据分析场景中,你会发现窗口函数真的很强大,灵活运用窗口函数可以解决很多复杂问题,比如去重、排名、同比及环比、连续登录等等。

既然窗口函数这么强大,更要了解和灵活运用它了,本文将对窗口函数进行一个全面的整理,讲一讲窗口函数是什么,有哪些分类,用法是什么,以及窗口函数的案例加深大家的理解。

那什么是窗口函数呢?

窗口函数出现在 SELECT 子句的表达式列表中,它最显著的特点就是 OVER 关键字。语法定义如下:

Function (arg1,..., argn) OVER ([PARTITION BY <...>] [ORDER BY <....>]

[])

Function (arg1,..., argn) 可以是下面的函数:

Aggregate Functions: 聚合函数,比如:sum(...)、 max(...)、min(...)、avg(...)等.

Sort Functions: 数据排序函数, 比如 :rank(...)、row_number(...)等.

Analytics Functions: 统计和比较函数, 比如:lead(...)、lag(...)、 first_value(...)等.

OVER ([PARTITION BY <...>] [ORDER BY <....>]

PARTITION BY 表示将数据先按 字段 进行分区

ORDER BY 表示将各个分区内的数据按 排序字段 进行排序

Image

c1jWq8

window_expression 用于确定窗边界名词含义

preceding

往前

following

往后

current row

当前行

unbounded

起点

unbounded preceding

从前面的起点

unbounded following

到后面的终点

窗口边界使用详解

Image

如果不指定 PARTITION BY,则不对数据进行分区,换句话说,所有数据看作同一个分区;

如果不指定 ORDER BY,则不对各分区做排序,通常用于那些顺序无关的窗口函数,例如 SUM()

如果不指定窗口子句,则默认采用以下的窗口定义:

若不指定 ORDER BY,默认使用分区内所有行 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING;若指定了 ORDER BY,默认使用分区内第一行到当前值 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW.

窗口函数的计算过程(语法中每个部分都是可选的)

按窗口定义,将所有输入数据分区、再排序(如果需要的话)

对每一行数据,计算它的窗口范围

将窗口内的行集合输入窗口函数,计算结果填入当前行

数据准备-- 创建表

CREATE TABLE IF NOT EXISTS q1_sales (

emp_name string,

emp_mgr string,

dealer_id int,

sales int,

stat_date string

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'

STORED as TEXTFILE;

-- 插入测试数据

insert into table q1_sales (emp_name,emp_mgr,dealer_id,sales,stat_date) 

values  

('Beverly Lang','Mike Palomino',2,16233,'2020-01-01'),

('Kameko French','Mike Palomino',2,16233,'2020-01-03'),

('Ursa George','Rich Hernandez',3,15427,'2020-01-04'),

('Ferris Brown','Dan Brodi',1,19745,'2020-01-02'),

('Noel Meyer','Kari Phelps',1,19745,'2020-01-05'),

('Abel Kim','Rich Hernandez',1,12369,'2020-01-03'),

('Raphael Hull','Kari Phelps',1,8227,'2020-01-02'),

('Jack Salazar','Kari Phelps',1,9710,'2020-01-01'),

('May Stout','Rich Hernandez',3,9308,'2020-01-05'),

('Haviva Montoya','Mike Palomino',2,9308,'2020-01-03');

-- 查看测试数据信息

select * from q1_sales;

+--------------------+-------------------+---------------------+-----------------+---------------------+

| q1_sales.emp_name  | q1_sales.emp_mgr  | q1_sales.dealer_id  | q1_sales.sales  | q1_sales.stat_date  |

+--------------------+-------------------+---------------------+-----------------+---------------------+

| Beverly Lang       | Mike Palomino     | 2                   | 16233           | 2020-01-01          |

| Kameko French      | Mike Palomino     | 2                   | 16233           | 2020-01-03          |

| Ursa George        | Rich Hernandez    | 3                   | 15427           | 2020-01-04          |

| Ferris Brown       | Dan Brodi         | 1                   | 19745           | 2020-01-02          |

| Noel Meyer         | Kari Phelps       | 1                   | 19745           | 2020-01-05          |

| Abel Kim           | Rich Hernandez    | 1                   | 12369           | 2020-01-03          |

| Raphael Hull       | Kari Phelps       | 1                   | 8227            | 2020-01-02          |

| Jack Salazar       | Kari Phelps       | 1                   | 9710            | 2020-01-01          |

| May Stout          | Rich Hernandez    | 3                   | 9308            | 2020-01-05          |

| Haviva Montoya     | Mike Palomino     | 2                   | 9308            | 2020-01-03          |

+--------------------+-------------------+---------------------+-----------------+---------------------+

10 rows selected (0.223 seconds)

窗口聚合函数有哪些?窗口函数返回类型函数功能说明

AVG()

参数类型为DECIMAL的返回类型为DECIMAL,其他为DOUBLE

AVG 窗口函数返回输入表达式值的平均值,忽略 NULL 值。

COUNT()

BIGINT

COUNT 窗口函数计算输入行数。COUNT(*) 计算目标表中的所有行,包括Null值;COUNT(expression) 计算特定列或表达式中具有非 NULL 值的行数。

MAX()

与传参类型一致

MAX窗口函数返回表达式在所有输入值中的最大值,忽略 NULL 值。

MIN()

与传参类型一致

MIN窗口函数返回表达式在所有输入值中的最小值,忽略 NULL 值。

SUM()

针对传参类型为DECIMAL的,返回类型一致;除此之外的浮点型为DOUBLE;传参类型为整数类型的,返回类型为BIGINT

SUM窗口函数返回所有输入值的表达式总和,忽略 NULL 值。

select emp_name,

emp_mgr,

dealer_id,

sales,

sum(sales) over ()                                                                                    as sample1, -- 所有sales和

sum(sales) over (partition by dealer_id)                                                              as sample2, -- 按dealer_id分组,组内数据累加

sum(sales) over (partition by dealer_id ORDER BY stat_date)                                           as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加

sum(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合

sum(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW)         as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合

sum(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)         as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合

sum(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7 -- 按dealer_id分组,时间排序,组内当前行和后面所有行

from q1_sales;

Image

hive sum窗口函数select emp_name,

emp_mgr,

dealer_id,

sales,

count(sales) over ()                                                                                    as sample1, -- 所有条数

count(sales) over (partition by dealer_id)                                                              as sample2, -- 按dealer_id分组,组内数据数量

count(sales) over (partition by dealer_id ORDER BY stat_date)                                           as sample3, -- 按dealer_id分组,时间排序,组内数据条数逐个相加

count(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合

count(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW)         as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合

count(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)         as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合

count(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7  -- 按dealer_id分组,时间排序,组内当前行和后面所有行

from q1_sales;

Image

hive count窗口函数

select emp_name,

emp_mgr,

dealer_id,

sales,

avg(sales) over ()                                                                                    as sample1, -- 所有sales聚合

avg(sales) over (partition by dealer_id)                                                              as sample2, -- 按dealer_id分组,组内数据累加

avg(sales) over (partition by dealer_id ORDER BY stat_date)                                           as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加

avg(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合

avg(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW)         as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合

avg(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)         as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合

avg(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7  -- 按dealer_id分组,时间排序,组内当前行和后面所有行

from q1_sales;

Image

hive avg窗口函数select emp_name,

emp_mgr,

dealer_id,

sales,

max(sales) over ()                                                                                    as sample1, -- 所有sales聚合

max(sales) over (partition by dealer_id)                                                              as sample2, -- 按dealer_id分组,组内数据累加

max(sales) over (partition by dealer_id ORDER BY stat_date)                                           as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加

max(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合

max(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW)         as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合

max(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)         as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合

max(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7  -- 按dealer_id分组,时间排序,组内当前行和后面所有行

from q1_sales;

Image

max

select emp_name,

emp_mgr,

dealer_id,

sales,

min(sales) over ()                                                                                    as sample1, -- 所有sales聚合

min(sales) over (partition by dealer_id)                                                              as sample2, -- 按dealer_id分组,组内数据累加

min(sales) over (partition by dealer_id ORDER BY stat_date)                                           as sample3, -- 按dealer_id分组,时间排序,组内数据逐个相加

min(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sample4, -- 按dealer_id分组,时间排序,组内由起点到当前行的聚合

min(sales)

OVER (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING and CURRENT ROW)         as sample5, -- 按dealer_id分组,时间排序,组内当前行和前面一行做聚合

min(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)         as sample6, -- 按dealer_id分组,时间排序,组内当前行和前一行和后一行聚合

min(sales)

over (PARTITION BY dealer_id ORDER BY stat_date ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING) as sample7  -- 按dealer_id分组,时间排序,组内当前行和后面所有行

from q1_sales;

Image

min

排名窗口函数窗口函数返回类型函数功能说明

ROW_NUMBER()

BIGINT

根据具体的分组和排序,为每行数据生成一个起始值等于1的唯一序列数

RANK()

BIGINT

对组中的数据进行排名,如果名次相同,则排名也相同,但是下一个名次的排名序号会出现不连续。

DENSE_RANK() dense是稠密的意思,可以引申记忆

BIGINT

dense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。当出现名次相同时,则排名序号也相同。而下一个排名的序号与上一个排名序号是连续的。

PERCENT_RANK()

DOUBLE

计算给定行的百分比排名。可以用来计算超过了百分之多少的人;排名计算公式为:(当前行的rank值-1)/(分组内的总行数-1)

CUME_DIST()

DOUBLE

计算某个窗口或分区中某个值的累积分布。假定升序排序,则使用以下公式确定累积分布:小于等于当前值x的行数 / 窗口或partition分区内的总行数。其中,x 等于 order by 子句中指定的列的当前行中的值

NTILE()

INT

已排序的行划分为大小尽可能相等的指定数量的排名的组,并返回给定行所在的组的排名。如果切片不均匀,默认增加第一个切片的分布,不支持ROWS BETWEENselect *,

ROW_NUMBER() over(partition by dealer_id order by sales desc) rk01,

RANK() over(partition by dealer_id order by sales desc) rk02,

DENSE_RANK() over(partition by dealer_id order by sales desc) rk03, 

PERCENT_RANK() over(partition by dealer_id order by sales desc) rk04

from q1_sales;

Image

开窗排名函数

select *,

CUME_DIST() over(partition by dealer_id order by sales ) rk05,

CUME_DIST() over(partition by dealer_id order by sales desc) rk06 

from q1_sales;

Image

开窗函数CUME_DISTselect *,

NTILE(2) over(partition by dealer_id order by sales ) rk07,

NTILE(3) over(partition by dealer_id order by sales ) rk08,

NTILE(4) over(partition by dealer_id order by sales ) rk09

from q1_sales;

Image

开窗函数NTILE

值窗口函数窗口函数返回类型函数功能说明

LAG()

与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL.

LEAD()

用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL.

FIRST_VALUE

取分组内排序后,截止到当前行,第一个值

LAST_VALUE

取分组内排序后,截止到当前行,最后一个值

注意: last_value默认的窗口是 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,表示当前行永远是最后一个值,需改成RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING。

select emp_name, dealer_id, sales, first_value(sales) over (partition by dealer_id order by sales) as dealer_low from q1_sales;

|-----------------|------------|--------|-------------|

|    emp_name     | dealer_id  | sales  | dealer_low  |

|-----------------|------------|--------|-------------|

| Raphael Hull    | 1          | 8227   | 8227        |

| Jack Salazar    | 1          | 9710   | 8227        |

| Ferris Brown    | 1          | 19745  | 8227        |

| Noel Meyer      | 1          | 19745  | 8227        |

| Haviva Montoya  | 2          | 9308   | 9308        |

| Beverly Lang    | 2          | 16233  | 9308        |

| Kameko French   | 2          | 16233  | 9308        |

| May Stout       | 3          | 9308   | 9308        |

| Abel Kim        | 3          | 12369  | 9308        |

| Ursa George     | 3          | 15427  | 9308        |

|-----------------|------------|--------|-------------|

10 rows selected (0.299 seconds)

select emp_name, dealer_id, sales, `year`, last_value(sales) over (partition by  emp_name order by `year`) as last_sale from emp_sales where `year` = 2013;

|-----------------|------------|--------|-------|------------|

|    emp_name     | dealer_id  | sales  | year  | last_sale  |

|-----------------|------------|--------|-------|------------|

| Beverly Lang    | 2          | 5324   | 2013  | 5324       |

| Ferris Brown    | 1          | 22003  | 2013  | 22003      |

| Haviva Montoya  | 2          | 6345   | 2013  | 13100      |

| Haviva Montoya  | 2          | 13100  | 2013  | 13100      |

| Kameko French   | 2          | 7540   | 2013  | 7540       |

| May Stout       | 2          | 4924   | 2013  | 15000      |

| May Stout       | 2          | 8000   | 2013  | 15000      |

| May Stout       | 2          | 15000  | 2013  | 15000      |

| Noel Meyer      | 1          | 13314  | 2013  | 13314      |

| Raphael Hull    | 1          | -4000  | 2013  | 14000      |

| Raphael Hull    | 1          | 14000  | 2013  | 14000      |

| Ursa George     | 1          | 10865  | 2013  | 10865      |

|-----------------|------------|--------|-------|------------|

12 rows selected (0.284 seconds)

开窗案例举例

如何使用开窗函数去重

select * from (select *,row_number() over(partition by emp_mgr order by stat_date desc) rk from q1_sales) tmp where rk = 1;

+-----------------+-----------------+----------------+------------+----------------+---------+

|  tmp.emp_name   |   tmp.emp_mgr   | tmp.dealer_id  | tmp.sales  | tmp.stat_date  | tmp.rk  |

+-----------------+-----------------+----------------+------------+----------------+---------+

| Ferris Brown    | Dan Brodi       | 1              | 19745      | 2020-01-02     | 1       |

| Noel Meyer      | Kari Phelps     | 1              | 19745      | 2020-01-05     | 1       |

| Haviva Montoya  | Mike Palomino   | 2              | 9308       | 2020-01-03     | 1       |

| May Stout       | Rich Hernandez  | 3              | 9308       | 2020-01-05     | 1       |

+-----------------+-----------------+----------------+------------+----------------+---------+

4 rows selected (25.707 seconds)

Image

窗口函数去重

如何使用开窗函数进行排名select *,row_number() over(partition by dealer_id order by sales desc) rk from q1_sales;

+--------------------+-------------------+---------------------+-----------------+---------------------+-----+

| q1_sales.emp_name  | q1_sales.emp_mgr  | q1_sales.dealer_id  | q1_sales.sales  | q1_sales.stat_date  | rk  |

+--------------------+-------------------+---------------------+-----------------+---------------------+-----+

| Noel Meyer         | Kari Phelps       | 1                   | 19745           | 2020-01-05          | 1   |

| Ferris Brown       | Dan Brodi         | 1                   | 19745           | 2020-01-02          | 2   |

| Abel Kim           | Rich Hernandez    | 1                   | 12369           | 2020-01-03          | 3   |

| Jack Salazar       | Kari Phelps       | 1                   | 9710            | 2020-01-01          | 4   |

| Raphael Hull       | Kari Phelps       | 1                   | 8227            | 2020-01-02          | 5   |

| Kameko French      | Mike Palomino     | 2                   | 16233           | 2020-01-03          | 1   |

| Beverly Lang       | Mike Palomino     | 2                   | 16233           | 2020-01-01          | 2   |

| Haviva Montoya     | Mike Palomino     | 2                   | 9308            | 2020-01-03          | 3   |

| Ursa George        | Rich Hernandez    | 3                   | 15427           | 2020-01-04          | 1   |

| May Stout          | Rich Hernandez    | 3                   | 9308            | 2020-01-05          | 2   |

+--------------------+-------------------+---------------------+-----------------+---------------------+-----+

10 rows selected (23.38 seconds)

Image

窗口函数排名

数仓增量数据合并

基于上述的排名和区中方法结合,可以实现数仓增量抽取的数据和历史数据合并去重。

你需要了解的全量表,增量表及拉链表

环比

数据准备

select * from temp_test12;

create table if not exists temp_test12 (

month  string comment '月份',

shop  string comment '店铺',

money  string comment '营业额'

);

insert into table temp_test12 (month,shop,money) 

values 

('2019-01','a',1),

('2019-04','a',4),

('2019-02','a',2),

('2019-03','a',3),

('2019-06','a',6),

('2019-05','a',5),

('2019-01','b',2),

('2019-02','b',4),

('2019-03','b',6),

('2019-04','b',8),

('2019-05','b',10),

('2019-06','b',12);

select * from temp_test12; 

+--------------------+-------------------+---------------------+

| temp_test12.month  | temp_test12.shop  | temp_test12.money  |

+--------------------+-------------------+---------------------+

| 2019-01         | a      | 1               |

| 2019-04       | a       | 4               |

| 2019-02           | a   | 3              |

| 2019-03      | a     | 4             |

| 2019-06       | a      | 6           |

| 2019-05     | a    | 5           |

| 2019-01       | b    | 2               |

| 2019-02       | b    | 4              |

| 2019-03     | b     | 6              |

| 2019-04        | b   | 8              |

| 2019-05         | b   | 10             |

| 2019-06        | b   | 12   |

+--------------------+-------------------+--------------------+

10 rows selected (23.38 seconds)

需求描述

查询店铺上个月的营业额,结果字段如下:

| 月份  | 商铺  | 本月营业额  | 上月营业额|

不使用开窗函数实现方案实现这个需求我们需要先使用row_number()over按商铺分组,按月份排序得出这样一个结果:

SELECT month

,shop

,money

,ROW_NUMBER() OVER (

PARTITION BY shop ORDER BY month

) AS rn

FROM temp_test12;

结果:

month  shop  money  rn

2019-01  a  1  1

2019-02  a  2  2

2019-03  a  3  3

2019-04  a  4  4

2019-05  a  5  5

2019-06  a  6  6

2019-01  b  2  1

2019-02  b  4  2

2019-03  b  6  3

2019-04  b  8  4

2019-05  b  10  5

2019-06  b  12  6

然后进行偏移自关联,将每个商铺的每个月的营业额和上个月的关联在一起:

WITH a

AS (

SELECT month

,shop

,MONEY

,ROW_NUMBER() OVER (

PARTITION BY shop ORDER BY month

) AS rn

FROM temp_test12

)

SELECT a1.month

,a1.shop

,a1.MONEY

,nvl(a2.month, '2018-12') before_month  --为了便于理解,这里加入上月的月份。如果上月没有的月份取为2018-12

,nvl(a2.MONEY, 1) before_money          --上月没有的营业额取为1

FROM a a1 --代表本月

LEFT JOIN a a2  --代表上月

ON a1.shop = a2.shop

AND a1.month = substr(add_months(CONCAT (

a2.month

,'-01'

), 1), 1, 7) --增加月份的函数add_months中至少要传入年月日

GROUP BY a1.month

,a1.shop

,a1.MONEY

,nvl(a2.month, '2018-12')

,nvl(a2.MONEY, 1);

结果:

a1.month  a1.shop  a1.money  before_month  before_money

2019-01  a  1  2018-12  1

2019-02  a  2  2019-01  1

2019-03  a  3  2019-02  2

2019-04  a  4  2019-03  3

2019-05  a  5  2019-04  4

2019-06  a  6  2019-05  5

2019-01  b  2  2018-12  1

2019-02  b  4  2019-01  2

2019-03  b  6  2019-02  4

2019-04  b  8  2019-03  6

2019-05  b  10  2019-04  8

2019-06  b  12  2019-05  10

lag 开窗函数实现环比

SELECT month

,shop

,MONEY

,LAG(MONEY, 1, 1) OVER ( --取分组内上一行的营业额,如果没有上一行则取1

PARTITION BY shop ORDER BY month  --按商铺分组,按月份排序

) AS before_money

FROM temp_test12;

-- 结果集如下

month  shop  money  before_money

2019-01  a  1  1

2019-02  a  2  1

2019-03  a  3  2

2019-04  a  4  3

2019-05  a  5  4

2019-06  a  6  5

2019-01  b  2  1

2019-02  b  4  2

2019-03  b  6  4

2019-04  b  8  6

2019-05  b  10  8

2019-06  b  12  10

lag 其他用法演示SELECT month

,shop

,MONEY

,LAG(MONEY, 1, 1) OVER (

PARTITION BY shop ORDER BY month

) AS before_money

,LAG(MONEY, 1) OVER (

PARTITION BY shop ORDER BY month

) AS before_money   --第三个参数不写的话,如果没有上一行值,默认取null

,LAG(MONEY) OVER (

PARTITION BY shop ORDER BY month

) AS before_money   --第二个参数不写默认为1,第三个参数不写的话,如果没有上一行值,默认取null,结果与上一列相同

,LAG(MONEY, 2, 1) OVER (

PARTITION BY shop ORDER BY month

) AS before_2month_money  --取两个月前的营业额

FROM temp_test12;

-- 结果集

month  shop  money  before_money  before_money  before_money  before_2month_money

2019-01  a  1  1  NULL  NULL  1

2019-02  a  2  1  1  1  1

2019-03  a  3  2  2  2  1

2019-04  a  4  3  3  3  2

2019-05  a  5  4  4  4  3

2019-06  a  6  5  5  5  4

2019-01  b  2  1  NULL  NULL  1

2019-02  b  4  2  2  2  1

2019-03  b  6  4  4  4  2

2019-04  b  8  6  6  6  4

2019-05  b  10  8  8  8  6

2019-06  b  12  10  10  10  8

-- 解释说明:

-- shop为a时,before_money指定了往上第1行的值,如果没有上一行值,默认取null,这里指定为1。

-- a的第1行,往上1行值为NULL,指定第三个参数取1,不指定取null 。

-- a的第2行,往上1行值为第1行营业额值,1。

-- a的第6行,往上1行值为为第5行营业额值,5

lead 求下月营业额

lead(col,n,default)与lag相反,统计分组内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,不填默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)。

新添一列每个商铺下个月的营业额,结果字段如下:  月份    商铺    本月营业额    下月营业额

SELECT month

,shop

,MONEY

,LEAD(MONEY, 1, 7) OVER (

PARTITION BY shop ORDER BY month

) AS after_money

,LEAD(MONEY, 1) OVER (

PARTITION BY shop ORDER BY month

) AS after_money   --第三个参数不写的话,如果没有下一行值,默认取null

,LEAD(MONEY, 2, 7) OVER (

PARTITION BY shop ORDER BY month

) AS after_2month_money  --取两个月后的营业额

FROM temp_test12;

结果:

month  shop  money  after_money  after_money  after_2month_money

2019-01  a  1  2  2  3

2019-02  a  2  3  3  4

2019-03  a  3  4  4  5

2019-04  a  4  5  5  6

2019-05  a  5  6  6  7

2019-06  a  6  7  NULL  7

2019-01  b  2  4  4  6

2019-02  b  4  6  6  8

2019-03  b  6  8  8  10

2019-04  b  8  10  10  12

2019-05  b  10  12  12  7

2019-06  b  12  7  NULL  7

解释说明:

shop为a时,after_money指定了往下第1行的值,如果没有下一行值,默认取null,这里指定为1。

a的第1行,往下1行值为第2行营业额值,2。

a的第2行,往下1行值为第3行营业额值,4。

a的第6行,往下1行值为NULL,指定第三个参数取7,不指定取null。

first_value(col)

用于取分组内排序后,截止到当前行,第一个col的值。ELECT month

,shop

,MONEY

,first_value(MONEY) OVER (

PARTITION BY shop ORDER BY month

) AS first_money

FROM temp_test12;

结果:

month  shop  money  first_money

2019-01  a  1  1

2019-02  a  2  1

2019-03  a  3  1

2019-04  a  4  1

2019-05  a  5  1

2019-06  a  6  1

2019-01  b  2  2

2019-02  b  4  2

2019-03  b  6  2

2019-04  b  8  2

2019-05  b  10  2

2019-06  b  12  2

解释说明:

shop为a时,截止到每一行时,分组内的第一行值都是1。

shop为b时,截止到每一行时,分组内的第一行值都是2。

last_value(col)

用于取分组内排序后,截止到当前行,最后一个col的值。

SELECT month

,shop

,MONEY

,last_value(MONEY) OVER (

PARTITION BY shop ORDER BY month

) AS last_money

FROM temp_test12;

结果:

month  shop  money  last_money

2019-01  a  1  1

2019-02  a  2  2

2019-03  a  3  3

2019-04  a  4  4

2019-05  a  5  5

2019-06  a  6  6

2019-01  b  2  2

2019-02  b  4  4

2019-03  b  6  6

2019-04  b  8  8

2019-05  b  10  10

2019-06  b  12  12

解释说明:

shop为a时,截止到每一行时,分组内的最后一行值都是该行本身。

shop为b时,截止到每一行时,分组内的最后一行值都是该行本身。

连续登录

数据准备源数据,文件中是以,号隔开的

id,date

A,2018-09-04

B,2018-09-04

C,2018-09-04

A,2018-09-05

A,2018-09-05

C,2018-09-05

A,2018-09-06

B,2018-09-06

C,2018-09-06

A,2018-09-04

B,2018-09-04

C,2018-09-04

A,2018-09-05

A,2018-09-05

C,2018-09-05

A,2018-09-06

B,2018-09-06

C,2018-09-06

展现连续登陆两天的用户信息

select  

*

from 

(

select 

id ,

date, 

lead(date,1,-1) over(partition by id order by date desc ) as date1   -- 按照用户分组,登录时间降序排序,获取上一次登录日期

from tb_use a 

group by id,date -- 去重当日重复登录,

) as b

where date_sub(cast(b.date as date),1)=cast(b.date1 as date); -- 判定当前登录日期的上一天是否与上一次登录日期一致,一致则判定为连续登录

结果:

b.id  b.date      b.date1

A     2018-09-06   2018-09-05

A     2018-09-05   2018-09-04

C     2018-09-06   2018-09-05

C     2018-09-05   2018-09-04

统计连续登陆两天的用户个数

(n天就只需要把lead(date,2,-1)中的2改成n-1并且把date_sub(cast(b.date as date),2)中的2改成n-1)select  

count(distinct b.id) as c1

from 

(

select id ,date, 

lead(date,1,-1) over(partition by id order by date desc )  as date1 

from tb_use a 

group by id,date 

) as b

where date_sub(cast(b.date as date),1)=cast(b.date1 as date);

结果:

c1

2

特说说明:上文指出了连续登录2天的场景,针对其他连续登录场景,假设连续登录n天,可将lead(date,1,-1)中的1改成n-1,date_sub(cast(b.date as date),1)中的1改成n-1。

占比、同比、环比计算(lag函数,lead函数)

数据准备

-- 创建表并插入数据

CREATE TABLE `saleorder`  (

`order_id` int ,

`order_time` date ,

`order_num` int

-- 插入测试数据

INSERT INTO `saleorder` VALUES 

(1, '2020-04-20', 420),

(2, '2020-04-04', 800),

(3, '2020-03-28', 500),

(4, '2020-03-13', 100),

(5, '2020-02-27', 300),

(6, '2020-01-07', 450),

(7, '2019-04-07', 800),

(8, '2019-03-15', 1200),

(9, '2019-02-17', 200),

(10, '2019-02-07', 600),

(11, '2019-01-13', 300);

select * from saleorder;

+---------------------+-----------------------+----------------------+

| saleorder.order_id  | saleorder.order_time  | saleorder.order_num  |

+---------------------+-----------------------+----------------------+

| 1                   | 2020-04-20            | 420                  |

| 2                   | 2020-04-04            | 800                  |

| 3                   | 2020-03-28            | 500                  |

| 4                   | 2020-03-13            | 100                  |

| 5                   | 2020-02-27            | 300                  |

| 6                   | 2020-01-07            | 450                  |

| 7                   | 2019-04-07            | 800                  |

| 8                   | 2019-03-15            | 1200                 |

| 9                   | 2019-02-17            | 200                  |

| 10                  | 2019-02-07            | 600                  |

| 11                  | 2019-01-13            | 300                  |

+---------------------+-----------------------+----------------------+

11 rows selected (0.331 seconds)

使用窗口函数实现占比SELECT 

order_month,

num,  -- 月销量

total, -- 年销量

round( num / total, 2 ) AS ratio -- 月销量占年销量比

FROM 

(

select 

substr(order_time, 1, 7) as order_month, --查询月份

sum(order_num) over (partition by substr(order_time, 1, 7)) as num, --根据月份分组,统计月销量

sum( order_num ) over ( PARTITION BY substr( order_time, 1, 4 ) ) total, --根据年分组,统计年销量

row_number() over (partition by substr(order_time, 1, 7)) as rk   

from saleorder

) temp 

where rk = 1;

+--------------+-------+--------+--------+

| order_month  |  num  | total  | ratio  |

+--------------+-------+--------+--------+

| 2019-04      | 800   | 3100   | 0.26   |

| 2019-03      | 1200  | 3100   | 0.39   |

| 2019-02      | 800   | 3100   | 0.26   |

| 2019-01      | 300   | 3100   | 0.1    |

| 2020-04      | 1220  | 2570   | 0.47   |

| 2020-03      | 600   | 2570   | 0.23   |

| 2020-02      | 300   | 2570   | 0.12   |

| 2020-01      | 450   | 2570   | 0.18   |

+--------------+-------+--------+--------+

8 rows selected (49.433 seconds)

Image

Hive窗口函数占比结算

使用窗口函数实现环比计算

什么是环比、什么是同比?与上年度数据对比称'同比',与上月数据对比称'环比'。

相关公式如下: 同比增长率计算公式:(当年值-上年值)/上年值x100%

环比增长率计算公式:(当月值-上月值)/上月值x100%

-- 环比增长率

select 

now_month,

now_num,

last_num,

concat( nvl ( round( ( now_num - last_num ) / last_num * 100, 2 ), 0 ), '%' ) 

FROM 

(

-- 2、查询上月销量

select 

now_month,

now_num, 

lag( t1.now_num, 1 ) over (order by t1.now_month ) as last_num 

from 

(

-- 1、按月统计销量

select 

substr(order_time, 1, 7) as now_month, 

sum(order_num) as now_num 

from saleorder 

group by 

substr(order_time, 1, 7) 

) t1

) t2;

+------------+----------+-----------+----------+

| now_month  | now_num  | last_num  |   _c3    |

+------------+----------+-----------+----------+

| 2019-01    | 300      | NULL      | 0.0%     |

| 2019-02    | 800      | 300       | 166.67%  |

| 2019-03    | 1200     | 800       | 50.0%    |

| 2019-04    | 800      | 1200      | -33.33%  |

| 2020-01    | 450      | 800       | -43.75%  |

| 2020-02    | 300      | 450       | -33.33%  |

| 2020-03    | 600      | 300       | 100.0%   |

| 2020-04    | 1220     | 600       | 103.33%  |

+------------+----------+-----------+----------+

8 rows selected (50.521 seconds)

-- 同比增长率计算公式 

同比的话,如果每个月都齐全,都有数据lag(num,12)就ok.。我们的例子中只有19年和20年1-4月份的数据。这种特殊情况应该如何处理?

SELECT

t1.now_month,

nvl ( now_num, 0 ) AS now_num,

nvl ( last_num, 0 ) AS last_num,

nvl ( round( ( now_num - last_num ) / last_num, 2 ), 0 ) AS ratio 

FROM

(

SELECT

DATE_FORMAT( order_time, 'yyyy-MM' ) AS now_month,

sum( order_num ) AS now_num 

FROM

saleorder 

GROUP BY

DATE_FORMAT( order_time, 'yyyy-MM' ) 

) t1

LEFT JOIN 

(

SELECT

DATE_FORMAT( DATE_ADD( order_time, 365 ), 'yyyy-MM' ) AS now_month,

sum( order_num ) AS last_num 

FROM

saleorder 

GROUP BY

DATE_FORMAT( DATE_ADD( order_time, 365 ), 'yyyy-MM' ) 

) AS t2 ON t1.now_month = t2.now_month;

+---------------+----------+-----------+--------+

| t1.now_month  | now_num  | last_num  | ratio  |

+---------------+----------+-----------+--------+

| 2019-01       | 300      | 0         | 0.0    |

| 2019-02       | 800      | 0         | 0.0    |

| 2019-03       | 1200     | 0         | 0.0    |

| 2019-04       | 800      | 0         | 0.0    |

| 2020-01       | 450      | 300       | 0.5    |

| 2020-02       | 300      | 800       | -0.63  |

| 2020-03       | 600      | 1200      | -0.5   |

| 2020-04       | 1220     | 800       | 0.53   |

+---------------+----------+-----------+--------+

8 rows selected (76.929 seconds)

Image

Image

其他案例-- 建表

CREATE TABLE order_info

(   

name string,

orderdate string,

cost string

);

-- 数据加载

INSERT INTO table order_info (name,orderdate,cost)  VALUE ('jack','2020-01-01','10'),

('tony','2020-01-02','15'),

('jack','2020-02-03','23'),

('tony','2020-01-04','29'),

('jack','2020-01-05','46'),

('jack','2020-04-06','42'),

('tony','2020-01-07','50'),

('jack','2020-01-08','55'),

('mart','2020-04-08','62'),

('mart','2020-04-09','68'),

('neil','2020-05-10','12'),

('mart','2020-04-11','75'),

('neil','2020-06-12','80'),

('mart','2020-04-13','94');

SELECT name,

orderdate,

cost, --当前window内,当前行的前一行到后一行 金额总和

sum(cast(cost AS INT)) over(PARTITION BY name

ORDER BY orderdate DESC ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS precedingFollow, --当前window内,当前行到最后行的金额总和

sum(cast(cost AS INT)) over(PARTITION BY name

ORDER BY orderdate DESC ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS currentFollow, --当前window内,按照时间进行排序

row_number() OVER(PARTITION BY name

ORDER BY orderdate DESC) AS rank,--用户上次购买的时间

lag(orderdate,1,'查无结果') over(PARTITION BY name

ORDER BY orderdate) AS lastTime,--用户下一次购买的时间

lead(orderdate,1,'查无结果') over(PARTITION BY name

ORDER BY orderdate)AS nextTime,--用户上次购物金额

lag(cost,1,'查无结果')over(PARTITION BY name

ORDER BY orderdate) AS lastCost,--用户下次购物金额

lead(cost,1,'查无结果') OVER (PARTITION BY name

ORDER BY orderdate) AS nextCost,--用户上一次+这次的购物金额

sum(cast(cost AS INT)) over(PARTITION BY name

ORDER BY orderdate ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS lastCurrentCost,--用户每月购物金额

sum(cast(cost AS INT)) over(PARTITION BY name,month(orderdate)

ORDER BY month(orderdate)) AS monthCost,--用户当月单词消费最大值

max(cast(cost AS INT)) over(PARTITION BY name,month(orderdate)

ORDER BY orderdate) AS monthMaxCost,--用户当月单词消费最小值

min(cast(cost AS INT)) over(PARTITION BY name,month(orderdate)

ORDER BY orderdate) as monthMinCost

FROM TEST.COSTITEM

间隔,最近两次间隔,登录间隔,出院间隔等等

select

user_name,

age,

in_hosp,

out_hosp,

datediff(in_hosp,LAG(out_hosp,1,in_hosp) OVER(PARTITION BY user_name ORDER BY out_hosp asc)) as days

from t_hosp;

扩展

一些优化思想

Image

有时候,一个 SELECT 语句中包含多个窗口函数,它们的窗口定义(OVER 子句)可能相同、也可能不同。显然,对于相同的窗口,完全没必要再做一次分区和排序,我们可以将它们合并成一个 Window 算子。

那如何利用一次排序计算多个窗口函数呢?某些情况下,这是可能的。下面的例子如下:ROW_NUMBER() OVER (PARTITION BY dealer_id ORDER BY sales) AS rank,   

AVG(sales) OVER (PARTITION BY dealer_id) AS avgsales ...

虽然这 2 个窗口并非完全一致,但是 AVG(sales) 不关心分区内的顺序,完全可以复用 ROW_NUMBER() 的窗口,这里提供了一种方式,尽一切可能利用能够复用的机会。

窗口函数 VS. 聚合函数

从聚合这个意义上出发,似乎窗口函数和 Group By 聚合函数都能做到同样的事情。但是,它们之间的相似点也仅限于此了!这其中的关键区别在于:窗口函数仅仅只会将结果附加到当前的结果上,它不会对已有的行或列做任何修改。而 Group By 的做法完全不同:对于各个 Group 它仅仅会保留一行聚合结果。

有的读者可能会问,加了窗口函数之后返回结果的顺序明显发生了变化,这不算一种修改吗?因为 SQL 及关系代数都是以 multi-set 为基础定义的,结果集本身并没有顺序可言,ORDER BY 仅仅是最终呈现结果的顺序。

另一方面,从逻辑语义上说,SELECT 语句的各个部分可以看作是按以下顺序“执行”的:

Image

窗口函数执行

注意到窗口函数的求值仅仅位于 ORDER BY 之前,而位于 SQL 的绝大部分之后。这也和窗口函数只附加、不修改的语义是呼应的,结果集在此时已经确定好了,再依次计算窗口函数。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多