局限和弱点分析:以下是不同渠道的一些局限分析:指标缺陷:其奖励模型围绕人类监督而设计,可能导致过度优化,从而影响性能,这种如何确定衡量指标的难题在它身上也少不了。就像机器翻译的Bleu值,一直被吐槽,但找不到更好更方便的评估方式。无法实时改写模型的信念:当模型表达对某个事物的信念时,即使该信念是错误的,也很难纠正它。这,简直就像一个倔强的老头。知识非实时更新:模型的内部知识停留在2021年,对2022年之后的新闻没有纳入。这点在体验层面也说到了。模态单一:目前的ChatGPT擅长NLP和Code任务,作为通向AGI的重要种子选手,将图像、视频、音频等图像与多模态集成进入LLM,乃至AI for Science、机器人控制等更多、差异化更明显的其它领域逐步纳入LLM,是LLM通往AGI的必经之路。而这个方向才刚刚开始,因此具备很高的研究价值。高成本:超级大模型因为模型规模大,所以训练成本过高,导致很少有机构有能力去做这件事。